zbMATH — the first resource for mathematics

From intrinsic optimization to iterated extended Kalman filtering on Lie groups. (English) Zbl 1368.94007
Summary: In this paper, we propose a new generic filter called ‘Iterated Extended Kalman Filter’ on Lie groups. It allows to perform parameter estimation when the state and the measurements evolve on matrix Lie groups. The contribution of this work is threefold: (1) the proposed filter generalizes the Euclidean Iterated Extended Kalman Filter to the case where both the state and the measurements evolve on Lie groups, (2) this novel filter bridges the gap between the minimization of intrinsic non-linear least squares criteria and filtering on Lie groups, (3) in order to detect and remove outlier measurements, a statistical test on Lie groups is proposed. In order to demonstrate the efficiency of the proposed generic filter, it is applied to the specific problem of relative motion averaging, both on synthetic and real data, for Lie groups \(\mathrm{SE}(3)\) (rigid-body motions), \(\mathrm{SL}(3)\) (homographies), and \(\mathrm{Sim}(3)\) (3D similarities). Typical applications of these problems are camera network calibration, image mosaicing, and partial 3D reconstruction merging problem. In each of these three applications, our approach significantly outperforms the state-of-the-art algorithms.
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68T45 Machine vision and scene understanding
Full Text: DOI
[1] Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009) · Zbl 1147.65043
[2] Agrawal, M.: A Lie algebraic approach for consistent pose registration for general Euclidean motion. In: IROS, pp. 1891-1897 (2006)
[3] Bandeira, A.S., Singer, A., Spielman, D.A.: A Cheeger inequality for the graph connection laplacian. arXiv preprint arXiv:1204.3873 (2012) · Zbl 1287.05081
[4] Barfoot, TD; Furgale, PT, Associating uncertainty with three-dimensional poses for use in estimation problems, IEEE Trans. Robot., 30, 679-693, (2014)
[5] Bell, BM; Cathey, FW, The iterated Kalman filter update as a Gauss-Newton method, IEEE Trans. Autom. Control, 38, 294-297, (1993) · Zbl 0775.93237
[6] Benhimane, S; Malis, E, Homography-based 2D visual tracking and servoing, Int. J. Robot. Res., 26, 661-676, (2007)
[7] Berger, J., Lenzen, F., Becker, F., Neufeld, A., Schnörr, C.: Second-order recursive filtering on the rigid-motion lie group se (3) based on nonlinear observations. arXiv preprint arXiv:1507.06810 (2015) · Zbl 1425.94009
[8] Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, Princeton (2009) · Zbl 1183.15001
[9] Bertsekas, DP, Incremental least squares methods and the extended Kalman filter, SIAM J. Optim., 6, 807-822, (1996) · Zbl 0945.93026
[10] Björck, A.: Numerical methods for least squares problems. Society for Industrial and Applied Mathematics, Philadelphia (1996). doi:10.1137/1.9781611971484 · Zbl 1270.68346
[11] Bonnabel, S.: Left-invariant extended Kalman filter and attitude estimation. In: IEEE Conference on Decision and Control (2007)
[12] Bonnabel, S., Martin, P., Salaun, E.: Invariant extended Kalman filter : theory and application to a velocity-aided attitude estimation problem. In: IEEE Conference on Decision and Control and 28th Chinese Control Conference (2009)
[13] Boumal, N., Singer, A., Absil, P.A.: Robust estimation of rotations from relative measurements by maximum likelihood. In: Proceedings of the 52nd Conference on Decision and Control, CDC (2013) · Zbl 1397.94014
[14] Boumal, N; Singer, A; Absil, PA; Blondel, VD, Cramer-Rao bounds for synchronization of rotations, Inf. Inference, 3, 1-39, (2014) · Zbl 1308.94041
[15] Bourmaud, G; Mégret, R; Arnaudon, M; Giremus, A, Continuous-discrete extended Kalman filter on matrix Lie groups using concentrated Gaussian distributions, J. Math. Imaging Vis., 51, 209-228, (2015) · Zbl 1397.94014
[16] Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu, Y.: Global motion estimation from relative measurements in the presence of outliers. ACCV (2014)
[17] Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu, Y.: Global motion estimation from relative measurements using iterated extended Kalman filter on matrix Lie groups. In: ICIP (2014)
[18] Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu, Y.: Discrete extended Kalman filter on Lie groups. In: Proceedings of the 21st European Signal Processing Conference (EUSIPCO) (2013) · Zbl 1308.94041
[19] Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Homography based Kalman filter for mosaic building. applications to UAV position estimation. In: IEEE International Conference on Robotics and Automation, pp. 2004-2009 (2007) · Zbl 0775.93237
[20] Chatterjee, A., Govindu, V.M.: Efficient and robust large-scale rotation averaging. In: ICCV (2013)
[21] Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, vol. 2. Springer, Boston (2012). doi:10.1007/978-0-8176-4944-9 · Zbl 1245.60001
[22] Crandall, D.J., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: CVPR, pp. 3001-3008 (2011)
[23] Crassidis, J; Markley, F, Unscented filtering for spacecraft attitude estimation, J. Guid. Control Dynam., 26, 536-542, (2003)
[24] Davison, AJ; Reid, ID; Molton, ND; Stasse, O, Monoslam: real-time single camera slam, IEEE Trans. Paatern Anal. Mach. Intell., 29, 1052-1067, (2007)
[25] Enqvist, O., Kahl, F., Olsson, C.: Non-sequential structure from motion. In: ICCV Workshops, pp. 264-271 (2011)
[26] Faraut, J.: Analysis on Lie Groups: An Introduction, vol. 110. Cambridge University Press, Cambridge (2008) · Zbl 1147.22001
[27] Fisher, RA; Yates, F, Statistical tables for biological, agricultural and medical research, Vet. Rec., 68, 1015, (1956) · JFM 64.1202.02
[28] Fredriksson, J., Olsson, C.: Simultaneous multiple rotation averaging using Lagrangian duality. In: Asian Conference of Computer Vision (2012)
[29] Govindu, VM, Combining two-view constraints for motion estimation, CVPR, 2, 218-225, (2001)
[30] Govindu, VM, Lie-algebraic averaging for globally consistent motion estimation, CVPR, 1, 684-691, (2004)
[31] Grisetti, G., Kuemmerle, R., Ni, K.: Robust optimization of factor graphs by using condensed measurements. In: IEEE International Conference on Intelligent Robots and Systems (IROS) (2012)
[32] Hall, B.: Lie Groups, Lie Algebras, and Representations An Elementary Introduction. Springer, New York (2003) · Zbl 1026.22001
[33] Hartley, R., Aftab, K., Trumpf, J.: L1 rotation averaging using the Weiszfeld algorithm. Institute of Electrical and Electronics Engineers, pp. 3041-3048 (2011). doi:10.1109/CVPR.2011.5995745
[34] Hartley, R; Trumpf, J; Dai, Y; Li, H, Rotation averaging, Int. J. Comput. Vis., 103, 267-305, (2013) · Zbl 1270.68346
[35] Haykin, S.S., et al.: Kalman filtering and neural networks. Wiley Online Library, (2001)
[36] Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.: Pushing the envelope of modern methods for bundle adjustment. In: CVPR (2010)
[37] Jiang, N., Cui, Z., Tan, P.: A global linear method for camera pose registration. In: 2013 IEEE International Conference on Computer Vision doi:10.1109/iccv.2013.66 · JFM 64.1202.02
[38] Kaess, M; Johannsson, H; Roberts, R; Ila, V; Leonard, JJ; Dellaert, F, Isam2: incremental smoothing and mapping using the Bayes tree, Int. J. Robot. Res., 31, 216-235, (2012)
[39] Kaess, M; Ranganathan, A; Dellaert, F, Isam: incremental smoothing and mapping, IEEE Trans. Robot. (TRO), 24, 1365-1378, (2008)
[40] Khurd, P; Grady, L; Oketokoun, R; Sundar, H; Gajera, T; Gibbs-Strauss, S; Frangioni, JV; Kamen, A, Global error minimization in image mosaicing using graph connectivity and its applications in microscopy, J. Pathol. Inform., 2, s8, (2012)
[41] Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: International Symposium on Mixed and Augmented Reality (ISMAR) (2007) · Zbl 1397.94014
[42] Konolige, K.: Sparse sparse bundle adjustment. In: BMVC, pp. 1-11 (2010)
[43] Lefferts, E; Markley, F; Shuster, M, Kalman filtering for spacecraft attitude estimation, J Guid. Control Dynam., 5, 417-429, (1982)
[44] Li, G., Liu, Y., Yin, J., Shi, Z.: Newton geodesic optimization on special linear group. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) (2009). doi:10.1109/cdc.2009.5400115
[45] Long, A.W., Wolfe, K.C., Mashner, M., Chirikjian, G.S.: The banana distribution is Gaussian: a localization study with exponential coordinates. In: Robotics: Science and Systems (2012) · JFM 64.1202.02
[46] Lui, Y, Advances in matrix manifolds for computer vision, Image Vis. Comput., 30, 380-388, (2011)
[47] Malis, E., T.Hamel, Mahony, R., Morin, P.: Dynamic estimation of homography transformations on the special linear group of visual servo control. In: IEEE Conference on Robotics and Automation (2009)
[48] Markley, F, Attitude error representation for Kalman filtering, J. Guid. Control Dynam., 26, 311-317, (2003)
[49] Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1-8. IEEE (2007)
[50] Meidow, J.: Efficient video mosaicking by multiple loop closing. In: Photogrammetric Image Analysis, pp. 1-12. Springer (2011)
[51] Moulon, P., Monasse, P., Marlet, R.: Global fusion of relative motions for robust, accurate and scalable structure from motion. In: Computer Vision (ICCV), 2013 IEEE International Conference on, pp. 3248-3255. IEEE (2013)
[52] Persson, S., Sharf, I.: Invariant momentum-tracking Kalman filter for attitude estimation. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 592-598 (2012). doi:10.1109/ICRA.2012.6224562
[53] Ramachandra, K.: Kalman Filtering Techniques for Radar Tracking. CRC Press, Boca Raton (2000)
[54] Ring, W; Wirth, B, Optimization methods on Riemannian manifolds and their application to shape space, SIAM J. Optim., 22, 596-627, (2012) · Zbl 1250.90111
[55] Roberts, R., Sinha, S.N., Szeliski, R., Steedly, D.: Structure from motion for scenes with large duplicate structures. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 3137-3144. IEEE (2011)
[56] Rudkovskii, M, Twisted product of Lie groups, Sib. Math. J., 38, 969-977, (1997)
[57] Selig, J.M.: Lie groups and Lie algebras in robotics. NATO Science Series II: Mathematics, Physics and Chemistry pp. 101-125 (2005) · Zbl 1111.70003
[58] Singer, A; Shkolnisky, Y, Three-dimensional structure determination from common lines in cryo-EM by eigenvectors and semidefinite programming, SIAM J. Imaging Sci., 4, 543-572, (2011) · Zbl 1216.92045
[59] Smith, P., Drummond, T., Roussopoulos, K.: Computing map trajectories by representing, propagating and combining pdfs over groups. In: ICCV, pp. 1275-1282 (2003)
[60] Strasdat, H., Davison, A., Montiel, J., Konolige, K.: Double window optimisation for constant time visual SLAM. In: IEEE International Conference on Computer Vision (ICCV) (2011)
[61] Strasdat, H., Montiel, J.M.M., Davison, A.J.: Real-time monocular slam: Why filter? In: ICRA, pp. 2657-2664 (2010)
[62] Taylor, C.J., Kriegman, D.J.: Minimization on the Lie group SO(3) and related manifolds (1994) · Zbl 1458.62320
[63] Vercauteren, T., Pennec, X., Malis, E., Perchant, A., Ayache, N.: Insight into efficient image registration techniques and the demons algorithm. In: Information Processing in Medical Imaging, pp. 495-506. Springer (2007)
[64] Wachinger, C; Wein, W; Navab, N, Registration strategies and similarity measures for three-dimensional ultrasound mosaicing, Acad. Radiol., 15, 1404-1415, (2008)
[65] Wang, L; Singer, A, Exact and stable recovery of rotations for robust synchronization, Inf. Inference, 2, 145-193, (2013) · Zbl 1309.65070
[66] Wang, Y; Chirikjian, G, Error propagation on the Euclidean group with applications to manipulators kinematics, IEEE Trans. Robot., 22, 591-602, (2006)
[67] Wolfe, K; Mashner, M; Chirikjian, G, Bayesian fusion on Lie groups, J. Algebr. Stat., 2, 75-97, (2011) · Zbl 1458.62320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.