A modified Chua chaotic oscillator and its application to secure communications. (English) Zbl 1338.94089

Summary: In this paper, a new modified Chua oscillator is introduced. The original Chua oscillator is well known for its simple implementation and mathematical modeling. A modification of the oscillator is proposed in order to facilitate the synchronization and the encryption and decryption scheme. The modification consists in changing the nonlinear term of the original oscillator to a smooth and bounded nonlinear function. A bifurcation diagram, a Poincaré map and the Lyapunov exponents are presented as proofs of chaoticity of the newly modified oscillator. An application to secure communications is proposed in which two channels are used. Numerical simulations are performed in order to analyze the communication system.


94A60 Cryptography
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI Link


[1] Agiza, H. N.; Yassen, M. T., Synchronization of rossler and Chen chaotic dynamical systems using active control, Phys. Lett. A, 278, 191-197, (2001) · Zbl 0972.37019
[2] Andrievsky, B., Adaptive synchronization methods for signal transmission on chaotic carriers, Math. Comput. Simul., 58, 46, 285-293, (2002) · Zbl 0995.65133
[3] Benítez, S.; Acho, L., Impulsive synchronization for a new chaotic oscillator, Int. J. Bifurcation Chaos, 17, 617-623, (2007) · Zbl 1139.37050
[4] Chlouverakis, K. E.; Sprott, J. C., A comparison of correlation and Lyapunov dimensions, Physica D, 200, 1-2, 156-164, (2005) · Zbl 1063.37023
[5] Chua, L. O.; Komuro, M.; Matsumoto, T., The double scroll family, IEEE Trans Circuits Syst., 33, 11, 1073-1118, (1986) · Zbl 0634.58015
[6] Chua, L. O.; Itoh, M.; Kocarev, L.; Eckert, K., Chaos synchronization in chua’s circuit, J.Circuits Syst. Comput., 3, 93-108, (1993)
[7] Chuang, C. F.; Sun, Y. J.; Wang, W. J., A novel synchronization scheme with a simple linear control and guaranteed convergence time for generalized Lorenz chaotic systems, Chaos, 22, (2012), <http://dx.doi:10.1063/1.4761818>
[8] Eckmann, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 3, 617-656, (1985) · Zbl 0989.37516
[9] Fallalih, K.; Leung, H., A chaos secure communication scheme based on multiplication modulation, Commun. Nonlinear Sci. Numer. Simul., 15, 368-383, (2010) · Zbl 1221.94045
[10] Feki, M., An adaptive chaos synchronization scheme applied to secure communication, Chaos Solitons Fractals, 18, 141-148, (2003) · Zbl 1048.93508
[11] Ge, Z. M.; Lee, J. K., Chaos synchronization and parameter identification for gyroscope system, Appl. Math. Comput., 163, 667-682, (2005) · Zbl 1116.70012
[12] V.N. Govorukhin. Lyapunov exponent calculation for ODE-system, MATLAB code, 2004.
[13] Guo, W.; Liu, D., Adaptive control in chua’s circuit, Math. Prob. Eng., 2011, (2011) · Zbl 1213.93100
[14] Huang, J., Adaptive synchronization between different hyper chaotic systems with fully uncertain parameters, Phys. Lett. A, 372, 4799-4804, (2008) · Zbl 1221.93127
[15] Khibnik, A. I.; Roose, D.; Chua, L. O., On periodic orbits and homoclinic bifurcations in chua’s circuit with a smooth nonlinearity, Int. J. Bifurcation Chaos, 3, 363-384, (1993) · Zbl 0870.58078
[16] Kiliç, R., Experimental study on impulsive synchronization between two modified chua’s circuits, Nonlinear Anal. Real World Appl., 7, 1298-1303, (2006) · Zbl 1130.37359
[17] Koofigar, H. R.; Sheikholeslam, F.; Hosseinnia, S., Robust adaptive synchronization for a general class of uncertain chaotic systems with application to chua’s circuit, Chaos, 21, (2011) · Zbl 1317.34087
[18] Lan, Y.; Li, Q., Chaos synchronization of a new hyper chaotic system, Appl. Math. Comput., 217, 2125-2132, (2010) · Zbl 1204.65144
[19] Lee, T. H.; Park, J. H., Adaptive functional projective lag synchronization of a hyperchaotic Rössler system, Chin. Phys. Lett., 26, 9, (2009), pp. 90507-1-4
[20] Lee, T. H.; Park, J. H.; Lee, S. M.; Kwon, O. M., Robust sampled-data control with random missing data scenario, Int. J. Control, 87, 9, 1957-1969, (2014) · Zbl 1317.93169
[21] Matsumoto, T.; Chua, L. O.; Komuro, M., The double scroll, IEEE Trans. Circuits Syst., 32, 797-818, (1985) · Zbl 0578.94023
[22] Morgul, O.; Feki, M., A chaotic masking scheme by using synchronized chaotic systems, Phys. Lett. A, 251, 3, 169-176, (1999)
[23] Müller, P. C., Calculation of Lyapunov exponents for dynamic systems with discontinuities, Chaos Solitons Fractals, 5, 9, 1671-1681, (1995) · Zbl 1080.34540
[24] Park, J. H., Chaos synchronization between two different chaotic dynamical systems, Chaos Solitons Fractals, 27, 549-554, (2006) · Zbl 1102.37304
[25] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824, (1990), <http://link.aps.org/doi/10.1103/PhysRevLett.64.821> · Zbl 0938.37019
[26] Qi, G. Y.; van Wyk, M. A.; van Wyk, B. J.; Chen, G., On a new hyperchaotic system, Phys. Lett. A, 372, 124-136, (2008) · Zbl 1217.37032
[27] Rosenstein, M. T.; Collins, J. J.; de Luca, C. J., A practical method for calculating largest Lyapunov exponents from small data sets, Physica D, 65, 117-134, (1993) · Zbl 0779.58030
[28] Salarieh, H.; Alasty, A., Adaptive chaos synchronization in chua’s systems with noisy parameters, Math. Comput. Simul., 79, 233-241, (2008) · Zbl 1166.34029
[29] Sandri, M., Numerical calculation of Lyapunov exponents, Math. J., 6, 3, 78-84, (1996)
[30] Sano, M.; Sawada, Y., Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett., 55, 10, 1082-1085, (1985)
[31] W.K. Steve. Lyapunov Exponents Toolbox for MATLAB, 1998.
[32] Tang, J., Synchronization of different fractional order time-delay chaotic systems using active control, Math. Prob. Eng., 2014, (2014) · Zbl 1407.34091
[33] Thomsen, J. J., Vibrations and stability: advanced theory, analysis, and tools, (2003), Springer
[34] Wang, X. Y.; Wang, M. J., A chaotic secure communication scheme based on observer, Commun. Nonlinear Sci. Numer. Simul., 14, 1502-1508, (2009)
[35] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317, (1985) · Zbl 0585.58037
[36] Wu, T.; Chen, M. S., Chaos control of the modified chua’s circuit system, Physica D, 164, 53-58, (2002) · Zbl 1008.37017
[37] Yang, T.; Chua, L. O., Secure communication via chaotic parameter modulation, IEEE Trans. Circuits Syst.-I Fundam. Theory Appl., 43, 817-819, (1996)
[38] Yang, T., A survey of chaotic secure communication systems, Int. J. Comput. Cognit., 2, 81-130, (2004)
[39] Yassen, M. T., Adaptive control and synchronization of a modified chua’s circuit system, Appl. Math. Comput., 135, 113-128, (2003) · Zbl 1038.34041
[40] Zapateiro, M.; Vidal, Y.; Acho, L., A secure communication scheme based on chaotic Duffing oscillators and frequency estimation for the transmission of binary-coded messages, Commun. Nonlinear Sci. Numer. Simul., 19, 4, 991-1003, (2014)
[41] Zhang, H.; Huang, W.; Wang, Z.; Chai, T., Adaptive synchronization between two different chaotic systems with unknown parameters, Phys. Lett. A, 350, 363-366, (2006) · Zbl 1195.93121
[42] Zhong, G. Q., Implementation of chua’s circuit with a cubic nonlinearity, IEEE Trans. Circuits Syst.-I Fundam. Theory Appl., 41, 934-941, (1994)
[43] Zhon-Ping, J., A note on chaotic secure communication systems, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 49, 92-96, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.