×

Solving contact mechanics problems with PERMON. (English) Zbl 1382.74004

Kozubek, Tomáš (ed.) et al., High performance computing in science and engineering. Second international conference, HPCSE 2015, Soláň, Czech Republic, May 25–28, 2015. Revised selected papers. Cham: Springer (ISBN 978-3-319-40360-1/pbk; 978-3-319-40361-8/ebook). Lecture Notes in Computer Science 9611, 101-115 (2016).
Summary: PERMON makes use of theoretical results in quadratic programming algorithms and domain decomposition methods. It is built on top of the PETSc framework for numerical computations. This paper describes its fundamental packages and shows their applications. We focus here on contact problems of mechanics decomposed by means of a FETI-type non-overlapping domain decomposition method. These problems lead to inequality constrained quadratic programming problems that can be solved by our PermonQP package.
For the entire collection see [Zbl 1337.65004].

MSC:

74-04 Software, source code, etc. for problems pertaining to mechanics of deformable solids
74M15 Contact in solid mechanics
90C20 Quadratic programming
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] PETSc PCBDDC manual page. http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDC.html
[2] Amestoy, P., et al.: MUMPS web pages (2015). http://mumps.enseeiht.fr/index.php?page=home
[3] Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc web pages (2015). http://www.mcs.anl.gov/petsc
[4] Brzobohatý, T., Dostál, Z., Kozubek, T., Kovář, P., Markopoulos, A.: Cholesky decomposition with fixing nodes to stable computation of a generalized inverse of the stiffness matrix of a floating structure. Int. J. Numer. Methods Eng. 88(5), 493–509 (2011) · Zbl 1242.74235
[5] Dostál, Z., Horák, D., Kučera, R.: Total FETI - an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun. Numer. Methods Eng. 22(12), 1155–1162 (2006) · Zbl 1107.65104
[6] Dostál, Z., Kozubek, T., Markopoulos, A., Menšík, M.: Cholesky decomposition of a positive semidefinite matrix with known kernel. Appl. Math. Comput. 217(13), 6067–6077 (2011) · Zbl 1211.65034
[7] Dostál, Z., Kozubek, T., Vondrák, V., Brzobohatý, T., Markopoulos, A.: Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int. J. Numer. Methods Eng. 82(11), 1384–1405 (2010) · Zbl 1188.74054
[8] Dostál, Z.: Optimal Quadratic Programming Algorithms, with Applications to Variational Inequalities. SOIA, vol. 23. Springer, New York (2009) · Zbl 1401.90013
[9] Dostál, Z., Horák, D.: Theoretically supported scalable FETI for numerical solution of variational inequalities. SIAM J. Numer. Anal. 45(2), 500–513 (2007) · Zbl 1162.65034
[10] Dostál, Z., Horák, D., Kučera, R., Vondrák, V., Haslinger, J., Dobiáš, J., Pták, S.: FETI based algorithms for contact problems: scalability, large displacements and 3D coulomb friction. Comput. Methods Appl. Mech. Eng. 194(2–5), 395–409 (2005) · Zbl 1085.74046
[11] Dostál, Z., Schöberl, J.: Minimizing quadratic functions subject to bound constraints. Comput. Optim. Appl. 30(1), 23–43 (2005) · Zbl 1071.65085
[12] Farhat, C., Mandel, J., Roux, F.X.: Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Eng. 115, 365–385 (1994)
[13] Farhat, C., Roux, F.X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32(6), 1205–1227 (1991) · Zbl 0758.65075
[14] Farhat, C., Roux, F.X.: An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J. Sci. Stat. Comput. 13(1), 379–396 (1992) · Zbl 0746.65086
[15] Friedlander, A., Martínez, J.M., Raydan, M.: New method for large-scale box constrained convex quadratic minimization problems. Optim. Methods Softw. 5(1), 57–74 (1995)
[16] Gosselet, P., Rey, C.: Non-overlapping domain decomposition methods in structural mechanics. Arch. Comput. Methods Eng. 13(4), 515–572 (2006) · Zbl 1171.74041
[17] Hapla, V., et al.: PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) web pages (2015). http://industry.it4i.cz/en/products/permon/
[18] Hapla, V., et al.: PermonQP web pages (2015). http://industry.it4i.cz/en/products/permon/qp/
[19] Hensinger, D.M., Drake, R.R., Foucar, J.G., Gardiner, T.A.: Pamgen, a library for parallel generation of simple finite element meshes. Technical report SAND2008-1933, Sandia National Laboratories Technical Report (2008)
[20] Jolivet, P., Hecht, F., Nataf, F., Prud’homme, C.: Scalable domain decomposition preconditioners for heterogeneous elliptic problems. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2013, pp. 80:1–80:11. ACM, New York, NY, USA (2013)
[21] Jolivet, P., et al.: HPDDM high-performance unified framework for domain decomposition methods. https://github.com/hpddm/hpddm
[22] Kozubek, T., Vondrák, V., Menšík, M., Horák, D., Dostál, Z., Hapla, V., Kabelíková, P., Čermák, M.: Total FETI domain decomposition method and its massively parallel implementation. Adv. Eng. Softw. 60–61, 14–22 (2013)
[23] Kruis, J.: Domain Decomposition Methods for Distributed Computing. Saxe-Coburg Publications, Stirling (2006)
[24] Kruis, J.: The FETI method and its applications: a review. In: Topping, B., Iványi, P. (eds.) Parallel, Distributed and Grid Computing for Engineering, vol. 21, pp. 199–216. Saxe-Coburg Publications, Stirling (2009)
[25] Li, X.S., et al.: SuperLU. http://acts.nersc.gov/superlu/
[26] Markopoulos, A., Hapla, V., Cermak, M., Fusek, M.: Massively parallel solution of elastoplasticity problems with tens of millions of unknowns using PermonCube and FLLOP packages. Appl. Math. Comput. 267, 698–710 (2015)
[27] Raback, P., et al.: Elmer web pages (2015). http://www.csc.fi/english/pages/elmer/
[28] Šístek, J., et al.: The Multilevel BDDC solver library (BDDCML). http://users.math.cas.cz/ sistek/software/bddcml.html
[29] Sousedík, B., Šístek, J., Mandel, J.: Adaptive-multilevel BDDC and its parallel implementation. Computing 95(12), 1087–1119 (2013) · Zbl 1307.65175
[30] The Trilinos Project: PAMGEN web pages (2015). http://trilinos.org/packages/pamgen/
[31] Vašatová, A., Čermák, M., Hapla, V.: Parallel implementation of the FETI DDM constraint matrix on top of PETSc for the PermonFLLOP package. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) Parallel Processing and Applied Mathematics. LNCS, vol. 9573, pp. 150–159. Springer, Heidelberg (2015)
[32] Čermák, M., Hapla, V., Horák, D., Merta, M., Markopoulos, A.: Total-FETI domain decomposition method for solution of elasto-plastic problems. Adv. Eng. Softw. 84, 48–54 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.