Grauert’s line bundle convexity, reduction and Riemann domains. (English) Zbl 1389.32021

Summary: We consider a convexity notion for complex spaces \(X\) with respect to a holomorphic line bundle \(L\) over \(X\). This definition has been introduced by H. Grauert [Math. Z. 81, 377–391 (1963; Zbl 0151.09702)] and, when \(L\) is analytically trivial, we recover the standard holomorphic convexity. In this circle of ideas, we prove the counterpart of the classical Remmert’s reduction result for holomorphically convex spaces. In the same vein, we show that if \(H^0(X,L)\) separates each point of \(X\), then \(X\) can be realized as a Riemann domain over the complex projective space \(\mathbb{P}^n\), where \(n\) is the complex dimension of \(X\) and \(L\) is the pull-back of \(\mathcal{O}(1)\).


32F17 Other notions of convexity in relation to several complex variables
32E05 Holomorphically convex complex spaces, reduction theory
32E99 Holomorphic convexity


Zbl 0151.09702
Full Text: DOI Link


[1] A. Andreotti: Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves. Bull. Soc. Math. Fr. 91 (1963), 1–38. (In French.)
[2] C. Bănică; O. Stănăşilă: Méthodes Algébriques dans la Théorie Globale des Espaces Complexes. Vol. 2. Traduit du Roumain. Collection ”Varia Mathematica”, Gauthier-Villars, Paris, 1977. (In French.)
[3] D. Barlet; A. Silva: Convexité holomorphe intermédiaire. Math. Ann. 296 (1993), 649–665. (In French. English summary.) · Zbl 0788.32007
[4] H. Cartan: Quotients of complex analytic spaces. Contrib. Function Theory. Int. Colloqu. Bombay, 1960, Tata Institute of Fundamental Research, Bombay, 1960, pp. 1–15.
[5] H. Grauert: Bemerkenswerte pseudokonvexe Mannigfaltigkeiten. Math. Z. 81 (1963), 377–391. (In German.) · Zbl 0151.09702
[6] H. Grauert: Charakterisierung der holomorph vollständigen komplexen Räume. Math. Ann. 129 (1955), 233–259. (In German.) · Zbl 0064.32603
[7] B. Kaup: Über offene analytische Äquivalenzrelationen auf komplexen Räumen. Math. Ann. 183 (1969), 6–16. (In German.) · Zbl 0172.10502
[8] R. Remmert: Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci., Paris 243 (1956), 118–121. (In French.) · Zbl 0070.30401
[9] B. Shiffman: On the removal of singularities for analytic sets. Mich. Math. J. 15 (1968), 111–120. · Zbl 0165.40503
[10] Y.-T. Siu: Techniques of Extension of Analytic Objects. Lecture Notes in Pure and Applied Mathematics, Vol. 8, Marcel Dekker, New York, 1974.
[11] T. Ueda: On the neighborhood of a compact complex curve with topologically trivial normal bundle. J. Math. Kyoto Univ. 22 (1983), 583–607. · Zbl 0519.32019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.