zbMATH — the first resource for mathematics

Active learning for extended finite state machines. (English) Zbl 1342.68174
Summary: We present a black-box active learning algorithm for inferring extended finite state machines (EFSM)s by dynamic black-box analysis. EFSMs can be used to model both data flow and control behavior of software and hardware components. Different dialects of EFSMs are widely used in tools for model-based software development, verification, and testing. Our algorithm infers a class of EFSMs called register automata. Register automata have a finite control structure, extended with variables (registers), assignments, and guards. Our algorithm is parameterized on a particular theory, i.e., a set of operations and tests on the data domain that can be used in guards.
Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We also show that, under these conditions, our framework induces a generalization of the classical Nerode equivalence and canonical automata construction to the symbolic setting. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.

68Q32 Computational learning theory
68Q45 Formal languages and automata
Sigma*; z3; LearnLib; Reo; Daikon; RALib
Full Text: DOI
[1] Ammons G, Bodík R, Larus JR (2002) Mining specifications. In: Proc. POPL 2002, pp 4-16. ACM · Zbl 1323.68361
[2] Alur R, Cerný P, Madhusudan P, Nam W (2005) Synthesis of interface specifications for Java classes. In: Proc. POPL 2005, pp 98-109. ACM · Zbl 1369.68126
[3] Aarts F, Ruiter JD, Poll E (2013) Formal models of bank cards for free. In: Proc. ICSTW 2013, pp 461-468. IEEE
[4] Aarts F, Heidarian F, Kuppens H, Olsen P, Vaandrager FW (2012) Automata learning through counterexample guided abstraction refinement. In: Proc. FM 2012, volume 7436 of LNCS, pp 10-27. Springer · Zbl 1372.68153
[5] Aarts F, Howar F, Kuppens H, Vaandrager FW (2014) Algorithms for inferring register automata—a comparison of existing approaches. In: Proc. ISoLA 2014, Part I, volume 8802 of LNCS, pp 202-219. Springer · Zbl 0786.68082
[6] Aarts F, Jonsson B, Uijen J, Vaandrager F (2014) Generating models of infinite-state communication protocols using regular inference with abstraction. Formal Methods Syst Design 46(1):1-41 · Zbl 1322.68131
[7] Aarts F, Kuppens H, Tretmans J, Vaandrager FW, Verwer S (2012) Learning and testing the bounded retransmission protocol. In: Proc. ICGI 2012, volume 21 of JMLR Proceedings, pp 4-18. JMLR.org
[8] Angluin, D, Learning regular sets from queries and counterexamples, Inf Comput, 75, 87-106, (1987) · Zbl 0636.68112
[9] Reo, FA, A channel-based coordination model for component composition, Math Struct Comput Sci, 14, 329-366, (2004) · Zbl 1085.68552
[10] Aarts F, Schmaltz J, Vaandrager FW (2010) Inference and abstraction of the biometric passport. In: Proc. ISoLA 2010, Part I, volume 6415 of LNCS, pp 673-686. Springer
[11] Botinčan M, Babić D (2013) Sigma*: symbolic learning of input-output specifications. In: Proc. POPL 2013, pp 443-456. ACM · Zbl 1301.68095
[12] Ball T, Bounimova E, Cook B, Levin V, Lichtenberg J, McGarvey C, Ondrusek B, Rajamani SK, Ustuner A (2006) Thorough static analysis of device drivers. In: Proc. 2006 EuroSys Conf., pp 73-85. ACM
[13] Bollig B, Habermehl P, Leucker M, Monmege B (2013) A fresh approach to learning register automata. In: Proc. DLT 2013, volume 7907 of LNCS, pp 118-130. Springer · Zbl 1381.68103
[14] Broy M, Jonsson B, Katoen J-P, Leucker M, Pretschner A (eds) (2004) Model-based testing of reactive systems, volume 3472 of LNCS. Springer, Berlin · Zbl 1070.68088
[15] Berg T, Jonsson B, Raffelt H (2008) Regular inference for state machines using domains with equality tests. In: Proc. FASE, volume 4961 of LNCS, pp 317-331 · Zbl 1161.68390
[16] Bertoli, P; Pistore, M; Traverso, P, Automated composition of web services via planning in asynchronous domains, Artif Intell, 174, 316-361, (2010)
[17] Clarke E. M, Grumberg O, Peled D (2001) Model checking. MIT Press, Cambridge · Zbl 0847.68063
[18] Cassel S, Howar F, Jonsson B (2015) RALib: a LearnLib extension for inferring efsms. In: DIFTS 2015, Available online: http://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf.
[19] Cassel S, Howar F, Jonsson B, Steffen B (2014) Learning extended finite state machines. In: Proc. SEFM 2014, volume 8702 of LNCS, pp 250-264. Springer · Zbl 1342.68174
[20] Moura L. MD, Bjørner N (2008) Z3: an efficient SMT solver. In: Proc. TACAS 2008, volume 4963 of LNCS, pp 337-340. Springer
[21] Ernst, MD; Perkins, JH; Guo, PJ; McCamant, S; Pacheco, C; Tschantz, MS; Xiao, C, The daikon system for dynamic detection of likely invariants, Sci Comput Program, 69, 35-45, (2007) · Zbl 1161.68390
[22] Gery E, Harel D, Rhapsody EP (2002) A complete life-cycle model-based development system. In: Proc. IFM 2002, volume 2335 of LNCS, pp 1-10. Springer · Zbl 1057.68589
[23] Groz R, Irfan M-N, Oriat C (2012) Algorithmic improvements on regular inference of software models and perspectives for security testing. In: Proc. ISoLA 2012, Part I, volume 7609 of LNCS, pp 444-457. Springer
[24] Giannakopoulou D, Rakamarić Z, Raman V (2012) Symbolic learning of component interfaces. In: Proc. SAS 2012, volume 7460 of LNCS, pp 248-264. Springer, Berlin, Heidelberg
[25] Hagerer A, Hungar H, Niese O, Steffen B (2002) Model generation by moderated regular extrapolation. In: Proc. FASE 2002, volume 2306 of LNCS, pp 80-95. Springer · Zbl 1059.68534
[26] Howar F, Isberner M, Steffen B, Bauer O, Jonsson B (2012) Inferring semantic interfaces of data structures. In: Proc. ISoLA 2012, Part I, volume 7609 of LNCS, pp 554-571. Springer
[27] Henzinger TA, Jhala R, Majumdar R (2005) Permissive interfaces. In: Proc. ESEC/FSE 2005, pp 31-40. ACM
[28] Hungar H, Niese O, Steffen B (2003) Domain-specific optimization in automata learning. In: Proc. CAV 2003, volume 2725 of LNCS, pp 315-327. Springer · Zbl 1278.68177
[29] Howar F (2012) Active learning of interface programs. PhD thesis, Technical University of Dortmund, Germany, 2012
[30] Howar F, Steffen B, Jonsson B, Cassel S (2012) Inferring canonical register automata. In: Proc. VMCAI 2012, volume 7148 of LNCS, pp 251-266. Springer · Zbl 1326.68168
[31] Howar F, Steffen B, Merten M (2011) Automata learning with automated alphabet abstraction refinement. In: Proc. VMCAI 2011, volume 6538 of LNCS, pp 263-277. Springer · Zbl 1317.68096
[32] Huima A (2007) Implementing Conformiq Qtronic. In: Proc. TestCom/FATES 2007, volume 4581 of LNCS, pp 1-12. Springer
[33] Isberner, M; Howar, F; Steffen, B, Learning register automata: from languages to program structures, Mach Learn, 96, 65-98, (2014) · Zbl 1317.68097
[34] Isberner M, Howar F, Steffen B (2015) The open-source learnlib—a framework for active automata learning. In: Kroening D, Pasareanu CS (eds) Proc. CAV 2015, volume 9206 of LNCS, pp 487-495. Springer
[35] Jhala, R; Majumdar, R, Software model checking, ACM Comput Surv, 41, 21, 1-21, 54, (2009)
[36] Lorenzoli D, Mariani L, Pezzè M (2008) Automatic generation of software behavioral models. In: Proc. ICSE 2008, pp 501-510. ACM
[37] Maler O, Mens I-E (2014) Learning regular languages over large alphabets. In: Proc. TACAS 2014, volume 8413 of LNCS, pp 485-499. Springer
[38] Rivest, RL; Schapire, RE, Inference of finite automata using homing sequences, Inf Comput, 103, 299-347, (1993) · Zbl 0786.68082
[39] Shu G, Lee D (2007) Testing security properties of protocol implementations—a machine learning based approach. In: Proc. ICDCS 2007, pp 25. IEEE
[40] Utting M, Legeard B (2007) Practical model-based testing—a tools approach. Morgan Kaufmann, Burlington
[41] Walkinshaw N, Bogdanov K, Derrick J, Paris J (2010) Increasing functional coverage by inductive testing: a case study. In: Proc. ICTSS 2010, volume 6435 of LNCS, pp 126-141. Springer
[42] Xiao H, Sun J, Liu Y, Lin S-W, Sun C (2013) Tzuyu: learning stateful typestates. In: Proc. ASE 2013, pp 432-442. IEEE · Zbl 0636.68112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.