On the recursive fractional variable-order derivative: equivalent switching strategy, duality, and analog modeling. (English) Zbl 1342.94132

Summary: In this paper, a switching strategy for recursive fractional variable-order derivative is proposed. This strategy can be interpreted as an explanation of order switching mechanism for this particular type of derivative. Additionally, important properties of variable fractional order derivatives, required for prove the main result, are introduced both in a difference equation and a matrix form. Duality between the recursive and standard variable-order derivative is detailed derived. Based on the switching scheme, an analog realization of the recursive variable-order derivative definition is presented. Experimental results obtained for the analog realization are compared to the numerical results.


94C05 Analytic circuit theory
26A33 Fractional derivatives and integrals
Full Text: DOI


[1] D. Chen, Z. Sun, X. Ma, L. Chen, Circuit implementation and model of a new multi-scroll chaotic system. Int. J. Circuit Theory Appl. 407-424 (2012). doi:10.1002/cta.1860
[2] Chen, D; Liu, C; Wu, C; Liu, Y; Ma, X; You, Y, A new fractional-order chaotic system and its synchronization with circuit simulation, Circuits, Syst. Signal Process., 31, 1599-1613, (2012)
[3] Chen, D; Wu, C; Iu, H; Ma, X, Circuit simulation for synchronization of a fractional-order and integer-order chaotic system, Nonlinear Dyn., 73, 1671-1686, (2013)
[4] A. Dzielinski, G. Sarwas, D. Sierociuk, Time domain validation of ultracapacitor fractional order model. In 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 3730-3735. doi:10.1109/CDC.2010.5717093. · Zbl 1268.34091
[5] Dzielinski, A; Sarwas, G; Sierociuk, D, Comparison and validation of integer and fractional order ultracapacitor models, Adv. Differ. Equ., 2011, 11, (2011) · Zbl 1268.34091
[6] Dzieliski, A; Sierociuk, D; Baleanu, D (ed.); Guvenc, ZB (ed.); Machado, JAT (ed.), Fractional order model of beam heating process and its experimental verification, 287-294, (2010), Netherlands · Zbl 1207.80006
[7] Texas Instruments, TL07x Low-Noise JFET-Input Operational Amplifiers (2014). http://www.ti.com/lit/ds/symlink/tl071.pdf. Accessed 30 Sept 2014
[8] Lorenzo, C; Hartley, T, Variable order and distributed order fractional operators, Nonlinear Dyn., 29, 57-98, (2002) · Zbl 1018.93007
[9] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differenctial Equations (Wiley, New York, 1993) · Zbl 0789.26002
[10] C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls. Springer, Berlin (2010). · Zbl 1211.93002
[11] K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, Waltham, MA (1974). · Zbl 0292.26011
[12] Ostalczyk, P; Rybicki, T, Variable-fractional-order dead-beat control of an electromagnetic servo, J. Vib. Control, 14, 1457-1471, (2008)
[13] Ostalczyk, P, Stability analysis of a discrete-time system with a variable-, fractional-order controller, Bull. Polish Acad. Sci., 58, 613-619, (2010) · Zbl 1219.93100
[14] Petras, I; Sierociuk, D; Podlubny, I, Identification of parameters of a half-order system, IEEE Trans. Signal Process., 60, 5561-5566, (2012) · Zbl 1393.94966
[15] I. Podlubny, Fractional Differential Equations. Academic Press, Waltham, MA (1999). · Zbl 0924.34008
[16] Podlubny, I, Matrix approach to discrete fractional calculus, Frac. Calc. Appl. Anal., 3, 359-386, (2000) · Zbl 1030.26011
[17] Podlubny, I; Chechkin, A; Skovranek, T; Chen, Y; Vinagre Jara, BM, Matrix approach to discrete fractional calculus II: partial fractional differential equations, J. Comput. Phys., 228, 3137-3153, (2009) · Zbl 1160.65308
[18] Ramirez, L; Coimbra, C, On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Physica D-Nonlinear Phenom., 240, 1111-1118, (2011) · Zbl 1219.76054
[19] S. Samko, A. Kilbas, O. Maritchev, Theory and Applications, Fractional integrals and derivative (Gordon and Breach, London, 1987)
[20] H. Sheng, H. Sun, C. Coopmans, Y. Chen, G.W. Bohannan, Physical experimental study of variable-order fractional integrator and differentiator. In Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications FDA’10 (2010). · Zbl 1030.26011
[21] Sheng, H; Sun, H; Chen, Y; Qiu, T, Synthesis of multifractional Gaussian noises based on variable-order fractional operators, Signal Process., 91, 1645-1650, (2011) · Zbl 1213.94049
[22] H. Sheng, Y. Chen, T. Qiu, Signal Processing Fractional Processes and Fractional-Order Signal Processing (Springer, London, 2012) · Zbl 1245.94004
[23] D. Sierociuk, Fractional Variable Order Derivative Simulink Toolkit (2012). http://www.mathworks.com/matlabcentral/fileexchange/38801-fractional-variable-order-derivative-simulink-toolkit. Accessed 30 Sept 2014
[24] D. Sierociuk, A. Dzielinski, New method of fractional order integrator analog modeling for orders 0.5 and 0.25. In Proceedings of the 16th International Conference on Methods and Models in Automation and Robotics (MMAR), 2011, pp. 137-141. Miedzyzdroje, Poland (2011). doi:10.1109/MMAR.2011.6031332.
[25] D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. Royal Soc. A 371(1990), 20120146 (2013). · Zbl 1382.80004
[26] D. Sierociuk, W. Malesza, M. Macias, Equivalent switching strategy and analog validation of the fractional variable order derivative definition. In Proceedings of European Control Conference ECC’2013, Zurich pp. 3464-3469 (2013).
[27] D. Sierociuk, W. Malesza, M. Macias, On a new definition of fractional variable-order derivative. In Proceedings of the 14th International Carpathian Control Conference (ICCC), (Rytro, Poland 2013), pp. 340-345. doi:10.1109/CarpathianCC.2013.6560566.
[28] D. Sierociuk, W. Malesza, M. Macias, Switching scheme, equivalence, and analog validation of the alternative fractional variable-order derivative definition. In Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, December 10-13, 2013. · Zbl 1342.94132
[29] Sierociuk, D; Podlubny, I; Petras, I, Experimental evidence of variable-order behavior of ladders and nested ladders, IEEE Trans. Control Syst. Technol., 21, 459-466, (2013)
[30] Sierociuk, D; Macias, M; Malesza, W, Analog modeling of fractional switched order derivative using different switching schemes, IEEE J. Emerg. Sel. Topics Circuits Syst., 3, 394-403, (2013)
[31] C.C. Tseng, Design and application of variable fractional order differentiator. In Proceedings of the 2004 IEEE Asia-Pacific Conference on Circuits and Systems, vol. 1, pp. 405-408 (2004).
[32] D. Valerio, J.S. da Costa, Variable-order fractional derivatives and their numerical approximations II-complex orders. In Proceedings of the Symposium on Fractional Signals and Systems, Caparica (2009).
[33] D. Valerio, J.S. da Costa, Variable-order fractional derivatives and their numerical approximations. Signal Process. 91(3, SI), 470-483 (2011). doi: 10.1016/j.sigpro.2010.04.006. · Zbl 1203.94060
[34] D. Valerio, B. Vinagre, J. Domingues, J.S. da Costa, Variable-order fractional derivatives and their numerical approximations I-real orders. In Proceedings of the Symposium on Fractional Signals and Systems, Caparica, 2009 (2009).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.