×

On the invariant mass conjecture in general relativity. (English) Zbl 0661.53060

Verf. beweist, daß unter gewissen Annahmen über das asymptotische Verhalten (im räumlichen Unendlichen) der Metrik gewissen Teilbereichen gewisser Raum-Zeiten eine Masse in invarianter Weise zugeordnet werden kann.
Reviewer: D.Geißler

MSC:

53C80 Applications of global differential geometry to the sciences
83C40 Gravitational energy and conservation laws; groups of motions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abbott, L. F., Deser, S.: Stability of gravity with a cosmological constant. Nucl. Phys.B195, 76–96 (1982) · Zbl 0900.53033
[2] Arnowitt, R., Deser, S., Misner, C. W.: The dynamics of general relativity. In: Gravitation, on introduction to current research. Witten L. (ed). New York: J. Wiley 1962 · Zbl 1152.83320
[3] Ashtekar, A.: Asymptotic structure of the gravitational field. In: General relativity and gravitation: one hundred years after the birth of albert Einstein. vol. 2, Held A. (ed.), pp. 37–70. New York: Plenum Press 1980
[4] Ashtekar, A., Hansen, R. O.: A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity. J. Math. Phys.19, 1542–1566 (1978)
[5] Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math.39, 661–693 (1986) · Zbl 0598.53045
[6] Bizoń, P. Malec, E.: On Witten’s positive energy proof for weakly asymptotically flat space-times. Class. Quantum Grav.3, L123-L128 (1986) · Zbl 0602.53055
[7] Chruściel, P. T.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological properties and global structure of space-time. Bergmann P. G., Sabbata, V.de (eds.), pp. 49–59. New York: Plenum Press 1986 · Zbl 0687.53070
[8] Chruściel, P. T.: A remark on the positive energy theorem. Class. Quantum Grav.3, L115-L121 (1986) · Zbl 0602.53056
[9] Chruściel, P. T., Kondracki, W.: Some global charges in classical yang-mills theory. Phys. Rev.D36, 1874–1881 (1987)
[10] Christodoulou, D. O’Murchadha, N.: The boost problem in general relativity. Commun. Math. Phys.80, 271–300 (1981) · Zbl 0477.35081
[11] Einstein, A.: Die Grundlage der allgemeinen Relativitaets-Theorie. Ann. Phys.49, 769–822 (1916) · JFM 46.1293.01
[12] Freud, Ph.v: Ueber die Ausdruecke der Gesamtenergie und des Gesamtimpulses eines materiellen Systems in der allgemeinen Relativitaets-Theorie. Ann. Math.40, 417–419 (1939) · Zbl 0020.42303
[13] Geroch, R.: Structure of the Gravitational Field at Spatial Infinity. J. Math. Phys.13, 956–968 (1972)
[14] O’Murchadha, N.: Total energy-momentum in general relativity. J. Math. Phys.27, 2111–2128 (1986) · Zbl 0603.53045
[15] Solovyev, V. O.: Generator algebra of the asymptotic Poincaré group in the general theory of relativity. Theor. Math. Phys.65, 400–414 (1985)
[16] Sommers, P.: The geometry of the gravitational field at spatial infinity. J. Math. Phys.19, 549–554 (1978)
[17] Trautman, A.: Conservation laws in general relativity, the same book as [ADM]
[18] Weinberg, S.: Gravitation and cosmology. New York: J. Wiley 1972 · Zbl 0256.05105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.