On diagonalization by dynamic output feedback. (English) Zbl 0661.93019

The purpose of this paper is to draw attention to a causality degree- dominance property in diagonalization problems by dynamic output feedback and constant precompensator. Even in the well-investigated special case of square transfer matrices, the property of degree-dominance yields new insight into the structure of diagonalizable transfer matrices.


93B25 Algebraic methods
93C05 Linear systems in control theory
93C35 Multivariable systems, multidimensional control systems
Full Text: EuDML Link


[1] J. C. Willems: The geometric approach to control system design. Proc. of 25th IEEE Conference on Decision and Control, Athens, Greece 1986, 1277-1278.
[2] J. J. Loiseau: Sur la modification de la structure a l’infini par retour d’état statique. SIAM J. Control Optim. 26 (1988), 2, 251-273. · Zbl 0643.93016 · doi:10.1137/0326015
[3] J. Descusse J. F. Lafay, M. Malabre: A survey on Morgan’s problem. Proc. of 25th IEEE Conference on Decision and Control, Athens, Greece 1986, 1289-1294. · Zbl 0539.93051
[4] C. A. Desoer, N. Gündes: Decoupling linear multiinput multioutput plants by dynamic output feedback: An algebraic theory. IEEE Trans. Automat. Control AC-31 (1986), 8, 744-750. · Zbl 0603.93029 · doi:10.1109/TAC.1986.1104391
[5] W. M. Wonham: Linear Multivariable Control: A Geometric Approach. Springer-Verlag, New York 1985. · Zbl 0609.93001
[6] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York 1974. · Zbl 0291.93002
[7] V. Eldem, A. B. Özgüler: A solution to diagonalization problem by constant precompensator and dynamic output feedback. Submitted for publication. · Zbl 0695.93018
[8] W. A. Wolovich: Output feedback decoupling. IEEE Trans. Automat. Control AC-20 (1975), 148-149. · Zbl 0299.93017 · doi:10.1109/TAC.1975.1100840
[9] M. M. Bayoumi, T. L. Duffield: Output feedback decoupling and pole placement in linear time-invariant systems. IEEE Trans. Automat. Control AC-22 (1977), 142-143.
[10] M. L. J. Hautus, M. Heymann: Linear feedback decoupling – Transfer function analysis. IEEE Trans. Automat. Control AC-28 (1983), 823-832. · Zbl 0523.93035 · doi:10.1109/TAC.1983.1103320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.