×

zbMATH — the first resource for mathematics

Higher derivative effects for 4d AdS gravity. (English) Zbl 1342.83307
Summary: Motivated by holography we explore higher derivative corrections to fourdimensional Anti-de Sitter (AdS) gravity. We point out that in such a theory the variational problem is generically not well-posed given only a boundary condition for the metric. However, when one evaluates the higher derivative terms perturbatively on a leading order Einstein solution, the equations of motion are always second order and therefore the variational problem indeed requires only a boundary condition for the metric. The equations of motion required to compute the spectrum around the corrected background are still generically higher order, with the additional boundary conditions being associated with new operators in the dual conformal field theory. We discuss which higher derivative curvature invariants are expected to arise in the four-dimensional action from a top-down perspective and compute the corrections to planar AdS black holes and to the spectrum around AdS in various cases. Requiring that the dual theory is unitary strongly constrains the higher derivative terms in the action, as the operators associated with the extra boundary conditions generically have complex conformal dimensions and non-positive norms.

MSC:
83E15 Kaluza-Klein and other higher-dimensional theories
83E30 String and superstring theories in gravitational theory
83C57 Black holes
Software:
NP; NPspinor
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Gubser, SS, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev., D 78, 065034, (2008)
[2] Hartnoll, SA; Herzog, CP; Horowitz, GT, Building a holographic superconductor, Phys. Rev. Lett., 101, 031601, (2008)
[3] Hartnoll, SA; Herzog, CP; Horowitz, GT, Holographic superconductors, JHEP, 12, 015, (2008) · Zbl 1329.81390
[4] Anninos, D.; Hartnoll, SA; Iqbal, N., Holography and the Coleman-mermin-wagner theorem, Phys. Rev., D 82, 066008, (2010)
[5] Witten, E., Chiral symmetry, the 1/n expansion and the SU(N ) Thirring model, Nucl. Phys., B 145, 110, (1978)
[6] Buchel, A.; Liu, JT; Starinets, AO, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys., B 707, 56, (2005) · Zbl 1160.81463
[7] Benincasa, P.; Buchel, A., Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP, 01, 103, (2006)
[8] Kats, Y.; Petrov, P., Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP, 01, 044, (2009) · Zbl 1243.81159
[9] Brigante, M.; Liu, H.; Myers, RC; Shenker, S.; Yaida, S., Viscosity bound violation in higher derivative gravity, Phys. Rev., D 77, 126006, (2008)
[10] Cai, R-G, Gauss-Bonnet black holes in AdS spaces, Phys. Rev., D 65, 084014, (2002)
[11] Nojiri, S.; Odintsov, SD, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT, Phys. Lett., B 521, 87, (2001) · Zbl 1020.83023
[12] Cvetič, M.; Nojiri, S.; Odintsov, SD, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys., B 628, 295, (2002) · Zbl 0992.83038
[13] Nojiri, S.; Odintsov, SD, (anti-) de Sitter black holes in higher derivative gravity and dual conformal field theories, Phys. Rev., D 66, 044012, (2002)
[14] Cho, Y.; Neupane, IP, Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity, Phys. Rev., D 66, 024044, (2002)
[15] Neupane, IP, Black hole entropy in string generated gravity models, Phys. Rev., D 67, 061501, (2003) · Zbl 1222.83111
[16] Gregory, R.; Kanno, S.; Soda, J., Holographic superconductors with higher curvature corrections, JHEP, 10, 010, (2009)
[17] Charmousis, C., Higher order gravity theories and their black hole solutions, Lect. Notes Phys., 769, 299, (2009) · Zbl 1163.83301
[18] Cai, R-G; Nie, Z-Y; Ohta, N.; Sun, Y-W, Shear viscosity from Gauss-Bonnet gravity with a Dilaton coupling, Phys. Rev., D 79, 066004, (2009)
[19] Charmousis, C.; Gouteraux, B.; Kiritsis, E., Higher-derivative scalar-vector-tensor theories: black holes, galileons, singularity cloaking and holography, JHEP, 09, 011, (2012)
[20] Bagger, J.; Lambert, N., Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev., D 77, 065008, (2008)
[21] Bagger, J.; Lambert, N., Comments on multiple M2-branes, JHEP, 02, 105, (2008)
[22] Gustavsson, A., Algebraic structures on parallel M2-branes, Nucl. Phys., B 811, 66, (2009) · Zbl 1194.81205
[23] Aharony, O.; Bergman, O.; Jafferis, DL; Maldacena, J., N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP, 10, 091, (2008) · Zbl 1245.81130
[24] Aharony, O.; Bergman, O.; Jafferis, DL, Fractional M2-branes, JHEP, 11, 043, (2008)
[25] Drukker, N.; Mariño, M.; Putrov, P., From weak to strong coupling in ABJM theory, Commun. Math. Phys., 306, 511, (2011) · Zbl 1232.81043
[26] Drukker, N.; Mariño, M.; Putrov, P., Nonperturbative aspects of ABJM theory, JHEP, 11, 141, (2011) · Zbl 1306.81219
[27] Li, W.; Song, W.; Strominger, A., Chiral gravity in three dimensions, JHEP, 04, 082, (2008) · Zbl 1246.83158
[28] Lü, H.; Pope, C., Critical gravity in four dimensions, Phys. Rev. Lett., 106, 181302, (2011)
[29] Lü, H.; Pang, Y.; Pope, C., Conformal gravity and extensions of critical gravity, Phys. Rev., D 84, 064001, (2011)
[30] Skenderis, K.; Taylor, M.; Rees, BC, Topologically massive gravity and the AdS/CFT correspondence, JHEP, 09, 045, (2009)
[31] K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the Topologically Massive Gravity/CFT correspondence, arXiv:0909.5617 [INSPIRE].
[32] Deser, S.; Jackiw, R.; Templeton, S., Three-dimensional massive gauge theories, Phys. Rev. Lett., 48, 975, (1982)
[33] Deser, S.; Jackiw, R.; Templeton, S., Topologically massive gauge theories, Annals Phys., 140, 372, (1982)
[34] Gibbons, G.; Hawking, S., Action integrals and partition functions in quantum gravity, Phys. Rev., D 15, 2752, (1977)
[35] York, JW, Conformatlly invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity, J. Math. Phys., 14, 456, (1973) · Zbl 0259.53014
[36] Lovelock, D., The Einstein tensor and its generalizations, J. Math. Phys., 12, 498, (1971) · Zbl 0213.48801
[37] Myers, RC, Higher derivative gravity, surface terms and string theory, Phys. Rev., D 36, 392, (1987)
[38] Hawking, S.; Luttrell, J., Higher derivatives in quantum cosmology. 1. the isotropic case, Nucl. Phys., B 247, 250, (1984)
[39] Madsen, M.; Barrow, JD, De Sitter ground states and boundary terms in generalized gravity, Nucl. Phys., B 323, 242, (1989)
[40] Hohm, O.; Tonni, E., A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP, 04, 093, (2010) · Zbl 1272.83031
[41] Compere, G.; McFadden, P.; Skenderis, K.; Taylor, M., The holographic fluid dual to vacuum Einstein gravity, JHEP, 07, 050, (2011) · Zbl 1298.83013
[42] Compere, G.; McFadden, P.; Skenderis, K.; Taylor, M., The relativistic fluid dual to vacuum Einstein gravity, JHEP, 03, 076, (2012) · Zbl 1309.81150
[43] Howe, P.; Tsimpis, D., On higher order corrections in M-theory, JHEP, 09, 038, (2003)
[44] Cederwall, M.; Gran, U.; Nilsson, BE; Tsimpis, D., Supersymmetric corrections to eleven-dimensional supergravity, JHEP, 05, 052, (2005)
[45] Hyakutake, Y.; Ogushi, S., Higher derivative corrections to eleven dimensional supergravity via local supersymmetry, JHEP, 02, 068, (2006)
[46] Hyakutake, Y., Toward the determination of R\^{3}F\^{2} terms in M-theory, Prog. Theor. Phys., 118, 109, (2007) · Zbl 1131.81025
[47] Henningson, M.; Skenderis, K., The holographic Weyl anomaly, JHEP, 07, 023, (1998) · Zbl 0958.81083
[48] Henningson, M.; Skenderis, K., Holography and the Weyl anomaly, Fortsch. Phys., 48, 125, (2000) · Zbl 0976.81093
[49] Stelle, K., Renormalization of higher derivative quantum gravity, Phys. Rev., D 16, 953, (1977)
[50] Stelle, K., Classical gravity with higher derivatives, Gen. Rel. Grav., 9, 353, (1978)
[51] Nojiri, S.; Odintsov, SD, Finite gravitational action for higher derivative and stringy gravities, Phys. Rev., D 62, 064018, (2000)
[52] Balasubramanian, V.; Kraus, P., A stress tensor for anti-de Sitter gravity, Commun. Math. Phys., 208, 413, (1999) · Zbl 0946.83013
[53] Haro, S.; Solodukhin, SN; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys., 217, 595, (2001) · Zbl 0984.83043
[54] Wald, RM, Black hole entropy is the Noether charge, Phys. Rev., D 48, 3427, (1993)
[55] Johansson, N.; Naseh, A.; Zojer, T., Holographic two-point functions for 4d log-gravity, JHEP, 09, 114, (2012)
[56] J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE]. · Zbl 1258.83002
[57] Sotiriou, TP; Faraoni, V., F (R) theories of gravity, Rev. Mod. Phys., 82, 451, (2010) · Zbl 1205.83006
[58] Felice, A.; Tsujikawa, S., F (R) theories, Living Rev. Rel., 13, 3, (2010) · Zbl 1215.83005
[59] Nojiri, S.; Odintsov, SD, Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models, Phys. Rept., 505, 59, (2011)
[60] Deser, S.; Tekin, B., Shortcuts to high symmetry solutions in gravitational theories, Class. Quant. Grav., 20, 4877, (2003) · Zbl 1170.83438
[61] Haro, S.; Sinkovics, A.; Skenderis, K., On alpha-prime corrections to D-brane solutions, Phys. Rev., D 68, 066001, (2003)
[62] Carminati, J.; McLenaghan, R., Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space, J. Math. Phys., 32, 3135, (1991) · Zbl 0736.76081
[63] Polishchuk, A., Massive symmetric tensor field on AdS, JHEP, 07, 007, (1999) · Zbl 1060.81591
[64] Bergshoeff, EA; Hohm, O.; Townsend, PK, More on massive 3D gravity, Phys. Rev., D 79, 124042, (2009)
[65] Skenderis, K., Lecture notes on holographic renormalization, Class. Quant. Grav., 19, 5849, (2002) · Zbl 1044.83009
[66] Skenderis, K.; Townsend, PK, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett., 96, 191301, (2006)
[67] McFadden, P.; Skenderis, K., Holography for cosmology, Phys. Rev., D 81, 021301, (2010)
[68] McFadden, P.; Skenderis, K., The holographic universe, J. Phys. Conf. Ser., 222, 012007, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.