×

zbMATH — the first resource for mathematics

Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. (English) Zbl 1441.62599
Summary: We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement error of certain types and can also handle non-synchronous trading. It is the first estimator which has these three properties which are all essential for empirical work in this area. We derive the large sample asymptotics of this estimator and assess its accuracy using a Monte Carlo study. We implement the estimator on some US equity data, comparing our results to previous work which has used returns measured over 5 or 10 min intervals. We show that the new estimator is substantially more precise.

MSC:
62P20 Applications of statistics to economics
62P05 Applications of statistics to actuarial sciences and financial mathematics
Software:
nlmdl; Ox
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersen, T.G.; Bollerslev, T.; Diebold, F.X., Parametric and nonparametric measurement of volatility, (), 67-138
[2] Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Labys, P., Great realizations, Risk, 13, 105-108, (2000)
[3] Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Labys, P., The distribution of exchange rate volatility, Journal of the American statistical association, 96, 42-55, (2001), Correction published in 2003 volume 98, page 501 · Zbl 1015.62107
[4] Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Labys, P., Modeling and forecasting realized volatility, Econometrica, 71, 579-625, (2003) · Zbl 1142.91712
[5] Andersen, T.G.; Bollerslev, T.; Meddahi, N., Market microstructure noise and realized volatility forecasting, Journal of econometrics, 160, 220-234, (2011) · Zbl 1441.62585
[6] Andrews, D.W.K., Heteroskedasticity and autocorrelation consistent covariance matrix estimation, Econometrica, 59, 817-858, (1991) · Zbl 0732.62052
[7] Bandi, F.M.; Russell, J.R., Microstructure noise, realized variance, and optimal sampling, Review of economic studies, 75, 339-369, (2008) · Zbl 1138.91394
[8] Bandi, F.M., Russell, J.R., 2005. Realized covariation, realized beta and microstructure noise. Graduate School of Business, University of Chicago (unpublished paper). · Zbl 1138.91394
[9] Bandi, F.M.; Russell, J.R., Seperating microstructure noise from volatility, Journal of financial economics, 79, 655-692, (2006)
[10] Barndorff-Nielsen, O.E.; Hansen, P.R.; Lunde, A.; Shephard, N., Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise, Econometrica, 76, 1481-1536, (2008) · Zbl 1153.91416
[11] Barndorff-Nielsen, O.E.; Hansen, P.R.; Lunde, A.; Shephard, N., Realised kernels in practice: trades and quotes, Econometrics journal, 12, 1-33, (2009) · Zbl 1179.91259
[12] Barndorff-Nielsen, O.E.; Shephard, N., Variation, jumps and high frequency data in financial econometrics, (), 328-372 · Zbl 1157.91017
[13] Barndorff-Nielsen, O.E.; Shephard, N., Econometric analysis of realised volatility and its use in estimating stochastic volatility models, Journal of the royal statistical society, series B, 64, 253-280, (2002) · Zbl 1059.62107
[14] Barndorff-Nielsen, O.E.; Shephard, N., Econometric analysis of realised covariation: high frequency covariance, regression and correlation in financial economics, Econometrica, 72, 885-925, (2004) · Zbl 1141.91634
[15] Barndorff-Nielsen, O.E.; Shephard, N., Power variation and time change, Theory of probability and its applications, 50, 1-15, (2005) · Zbl 1095.60023
[16] Bollerslev, T.; Tauchen, G.; Zhou, H., Expected stock returns and variance risk premia, Review of financial studies, 22, 4463-4492, (2009)
[17] Brownless, C.T.; Gallo, G.M., Financial econometric analysis at ultra-high frequency: data handling concerns, Computational statistics & data analysis, 51, 2232-2245, (2006) · Zbl 1157.62517
[18] Campbell, J.Y.; Lo, A.W.; MacKinlay, A.C., The econometrics of financial markets, (1997), Princeton University Press · Zbl 0927.62113
[19] Christensen, K., Kinnebrock, S., Podolskij, M., 2009. Pre-averaging estimators of the ex-post covariance matrix. Research paper 2009-45, CREATES, Aarhus University. · Zbl 1431.62472
[20] de Pooter, M.; Martens, M.; van Dijk, D., Predicting the daily covariance matrix for \(s \& p\) 100 stocks using intraday data — but which frequency to use?, Econometric reviews, 27, 199-229, (2008) · Zbl 1359.62522
[21] Doornik, J.A., Ox: an object-orientated matrix programming langguage, (2006), Timberlake Consultants Ltd. London
[22] Dovonon, P., Goncalves, S., Meddahi, N., 2011. Bootstrapping realized multivariate volatility measures. Journal of Econometrics (forthcoming). · Zbl 1443.62344
[23] Drechsler, I.; Yaron, A., What’s vol got to do with it, Journal of econometrics, 24, 1-45, (2011)
[24] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling extremal events for insurance and finance, (1997), Springer Berlin · Zbl 0873.62116
[25] Engle, R.F.; Gallo, J.P., A multiple indicator model for volatility using intra daily data, Journal of econometrics, 131, 3-27, (2006) · Zbl 1337.62359
[26] Engle, R.F.; Kroner, K.F., Multivariate simultaneous generalized ARCH, Econometric theory, 11, 122-150, (1995)
[27] Engle, R.F.; Mezrich, J., GARCH for groups, Risk, 36-40, (1996)
[28] Epps, T.W., Comovements in stock prices in the very short run, Journal of the American statistical association, 74, 291-296, (1979)
[29] Falkenberry, T.N., 2001. High frequency data filtering, Technical Report, Tick Data.
[30] Fisher, L., Some new stock-market indexes, Journal of business, 39, 191-225, (1966)
[31] Fleming, J.; Kirby, C.; Ostdiek, B., The economic values of volatility timing using ‘realized’ volatility, Journal of financial economics, 67, 473-509, (2003)
[32] Gallant, A.R., Nonlinear statistical models, (1987), John Wiley New York · Zbl 0611.62071
[33] Ghysels, E.; Harvey, A.C.; Renault, E., Stochastic volatility, (), 119-191
[34] Glasserman, P., Monte Carlo methods in financial engineering, (2004), Springer-Verlag New York, Inc · Zbl 1038.91045
[35] Goncalves, S.; Meddahi, N., Bootstrapping realized volatility, Econometrica, 77, 283-306, (2009) · Zbl 1160.91397
[36] Griffin, J.E.; Oomen, R.C.A., Covariance measurement in the presence of non-synchronous trading and market microstructure noise, Journal of econometrics, 160, 58-68, (2011) · Zbl 1441.62710
[37] Guillaume, D.M.; Dacorogna, M.M.; Dave, R.R.; Müller, U.A.; Olsen, R.B.; Pictet, O.V., From the bird’s eye view to the microscope: a survey of new stylized facts of the intra-daily foreign exchange markets, Finance and stochastics, 2, 95-130, (1997) · Zbl 0889.90021
[38] Hansen, P.R., Horel, G., 2009. Quadratic Variation by Markov Chains, working paper. http://www.stanford.edu/people/peter.hansen.
[39] Hansen, P.R.; Large, J.; Lunde, A., Moving average-based estimators of integrated variance, Econometric reviews, 27, 79-111, (2008) · Zbl 1148.62088
[40] Hansen, P.R.; Lunde, A., A realized variance for the whole day based on intermittent high-frequency data, Journal of financial econometrics, 3, 525-554, (2005)
[41] Hansen, P.R.; Lunde, A., Realized variance and market microstructure noise (with discussion), Journal of business and economic statistics, 24, 127-218, (2006)
[42] Harris, F.; McInish, T.; Shoesmith, G.; Wood, R., Cointegration, error correction and price discovery on informationally-linked security markets, Journal of financial and quantitative analysis, 30, 563-581, (1995)
[43] Hayashi, T., Jacod, J., Yoshida, N., 2008. Irregular Sampling and Central Limit Theorems for Power Variations: The Continuous Case. Keio University (unpublished paper). · Zbl 1271.62198
[44] Hayashi, T.; Yoshida, N., On covariance estimation of non-synchronously observed diffusion processes, Bernoulli, 11, 359-379, (2005) · Zbl 1064.62091
[45] Jacod, J., 1994. Limit of random measures associated with the increments of a Brownian semimartingale. Preprint number 120, Laboratoire de Probabilitiés, Université Pierre et Marie Curie, Paris.
[46] Jacod, J., 2008. Statistics and high frequency data (unpublished paper). · Zbl 1375.62025
[47] Jacod, J.; Li, Y.; Mykland, P.A.; Podolskij, M.; Vetter, M., Microstructure noise in the continuous case: the pre-averaging approach, Stochastic processes and their applications, 119, 2249-2276, (2009) · Zbl 1166.62078
[48] Jacod, J.; Protter, P., Asymptotic error distributions for the Euler method for stochastic differential equations, Annals of probability, 26, 267-307, (1998) · Zbl 0937.60060
[49] Jacod, J.; Shiryaev, A.N., Limit theorems for stochastic processes, (2003), Springer Berlin · Zbl 0830.60025
[50] Kalnina, I.; Linton, O., Estimating quadratic variation consistently in the presence of correlated measurement error, Journal of econometrics, 147, 47-59, (2008) · Zbl 1429.62676
[51] Large, J., 2007. Accounting for the Epps Effect: Realized Covariation, Cointegration and Common Factors. Oxford-Man Institute, University of Oxford (unpublished paper).
[52] Li, Y., Mykland, P., Renault, E., Zhang, L., Zheng, X., 2009. Realized volatility when endogeniety of time matters. Department of Statistics, University of Chicago. Working Paper.
[53] Malliavin, P.; Mancino, M.E., Fourier series method for measurement of multivariate volatilities, Finance and stochastics, 6, 49-61, (2002) · Zbl 1008.62091
[54] Martens, M., 2003. Estimating unbiased and precise realized covariances. Department of Finance, Erasmus School of Economics, Rotterdam (unpublished paper).
[55] Mykland, P.A.; Zhang, L., ANOVA for diffusions and ito processes, Annals of statistics, 34, 1931-1963, (2006) · Zbl 1246.91110
[56] Mykland, P.A.; Zhang, L., Inference for continuous semimartingales observed at high frequency: a general approach, Econometrica, 77, 1403-1455, (2009) · Zbl 1182.62216
[57] Mykland, P.A., Zhang, L., 2009. The econometrics of high frequency data. In: A.L.M. Kessler and M. Sørensen, (Eds), ‘Statistical Methods for Stochastic Differential Equations’, Chapman & Hall/CRC Press (forthcoming).
[58] Newey, W.K.; West, K.D., A simple positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica, 55, 703-708, (1987) · Zbl 0658.62139
[59] Phillips, P.C.B., Yu, J., 2008. Information loss in volatility measurement with flat price trading. Cowles Foundation for Research in Economics, Yale University (unpublished paper).
[60] Protter, P., Stochastic integration and differential equations, (2004), Springer-Verlag New York · Zbl 1041.60005
[61] Renault, E.; Werker, B., Causality effects in return volatility measures with random times, Journal of econometrics, 160, 272-279, (2011) · Zbl 1441.62850
[62] Reno, R., A closer look at the epps effect, International journal of theoretical and applied finance, 6, 87-102, (2003) · Zbl 1079.91537
[63] Shephard, N.; Sheppard, K.K., Realising the future: forecasting with high frequency based volatility (HEAVY) models, Journal of applied econometrics, 25, 197-231, (2010)
[64] Silverman, B.W., Density estimation for statistical and data analysis, (1986), Chapman & Hall London · Zbl 0617.62042
[65] Vetter, M., 2008. Estimation methods in noisy diffusion models. Ph.D. thesis, Institute of Mathematics, Ruhr University Bochum.
[66] Voev, V.; Lunde, A., Integrated covariance estimation using high-frequency data in the presence of noise, Journal of financial econometrics, 5, 68-104, (2007)
[67] Zhang, L., Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach, Bernoulli, 12, 1019-1043, (2006) · Zbl 1117.62119
[68] Zhang, L.; Mykland, P.A.; Aït-Sahalia, Y., A tale of two time scales: determining integrated volatility with noisy high-frequency data, Journal of the American statistical association, 100, 1394-1411, (2005) · Zbl 1117.62461
[69] Zhou, B., High-frequency data and volatility in foreign-exchange rates, Journal of business and economic statistics, 14, 45-52, (1996)
[70] Zhou, B., Parametric and nonparametric volatility measurement, (), 109-123, (Chapter 6)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.