×

Security and privacy aspects in MapReduce on clouds: a survey. (English) Zbl 1371.68034

Summary: MapReduce is a programming system for distributed processing of large-scale data in an efficient and fault tolerant manner on a private, public, or hybrid cloud. MapReduce is extensively used daily around the world as an efficient distributed computation tool for a large class of problems, e.g., search, clustering, log analysis, different types of join operations, matrix multiplication, pattern matching, and analysis of social networks. Security and privacy of data and MapReduce computations are essential concerns when a MapReduce computation is executed in public or hybrid clouds. In order to execute a MapReduce job in public and hybrid clouds, authentication of mappers-reducers, confidentiality of data-computations, integrity of data-computations, and correctness-freshness of the outputs are required. Satisfying these requirements shields the operation from several types of attacks on data and MapReduce computations. In this paper, we investigate and discuss security and privacy challenges and requirements, considering a variety of adversarial capabilities, and characteristics in the scope of MapReduce. We also provide a review of existing security and privacy protocols for MapReduce and discuss their overhead issues.

MSC:

68M14 Distributed systems
68M12 Network protocols
68-02 Research exposition (monographs, survey articles) pertaining to computer science
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] P. Mell, T. Grance, The NIST definition of cloud computing. 2011.
[2] Buyya, R.; Broberg, J.; Goscinski, A. M., Cloud computing: principles and paradigms, vol. 87, (2010), John Wiley & Sons
[3] Zhang, Q.; Cheng, L.; Boutaba, R., Cloud computing: state-of-the-art and research challenges, J. Internet Serv. Appl., 1, 1, 7-18, (2010)
[4] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clusters, in: 6th Symposium on Operating System Design and Implementation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004, 2004, pp. 137-150.
[5] K. Zhang, X. Zhou, Y. Chen, X. Wang, Y. Ruan, Sedic: privacy-aware data intensive computing on hybrid clouds, in: Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, 2011, pp. 515-526.
[6] J.J. Stephen, P. Eugster, Assured cloud-based data analysis with ClusterBFT, in: Middleware 2013—ACM/IFIP/USENIX 14th International Middleware Conference, Beijing, China, December 9-13, 2013, Proceedings, 2013, pp. 82-102.
[7] Thusoo, A.; Sarma, J. S.; Jain, N.; Shao, Z.; Chakka, P.; Anthony, S.; Liu, H.; Wyckoff, P.; Murthy, R., Hive—A warehousing solution over a map-reduce framework, Proc. VLDB, 2, 2, 1626-1629, (2009)
[8] George, L., Hbase: the definitive guide, (2011), O’Reilly Media, Inc.
[9] Sakr, S.; Liu, A.; Fayoumi, A. G., The family of mapreduce and large-scale data processing systems, ACM Comput. Surv., 46, 1, 11, (2013)
[10] Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A. D.; Katz, R. H.; Konwinski, A.; Lee, G.; Patterson, D. A.; Rabkin, A.; Stoica, I.; Zaharia, M., A view of cloud computing, Commun. ACM, 53, 4, 50-58, (2010)
[11] Anthes, G., Security in the cloud, Commun. ACM, 53, 11, 16-18, (2010)
[12] Takabi, H.; Joshi, J. B.D.; Ahn, G., Security and privacy challenges in cloud computing environments, IEEE Secur. Privacy, 8, 6, 24-31, (2010)
[13] Zissis, D.; Lekkas, D., Addressing cloud computing security issues, Future Gener. Comput. Syst., 28, 3, 583-592, (2012)
[14] Xiao, Z.; Xiao, Y., Security and privacy in cloud computing, IEEE Commun. Surv. Tutor., 15, 2, 843-859, (2013)
[15] Rahman, N. H.A.; Choo, K. R., A survey of information security incident handling in the cloud, Comput. Secur., 49, 45-69, (2015)
[16] Ali, M.; Khan, S. U.; Vasilakos, A. V., Security in cloud computing: opportunities and challenges, Inf. Sci., 305, 357-383, (2015)
[17] Leskovec, J.; Rajaraman, A.; Ullman, J. D., Mining of massive datasets, (2014), Cambridge University Press
[18] F.N. Afrati, S. Dolev, E. Korach, S. Sharma, J.D. Ullman, Assignment problems of different-sized inputs in MapReduce. CoRR, abs/1507.04461, 2015.
[19] F.N. Afrati, A.D. Sarma, S. Salihoglu, J.D. Ullman, Vision paper: Towards an understanding of the limits of map-reduce computation. CoRR, abs/1204.1754, 2012.
[20] R. Vernica, M.J. Carey, C. Li, Efficient parallel set-similarity joins using MapReduce, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, 2010, pp. 495-506.
[21] C. Xiao, W. Wang, X. Lin, J.X. Yu, Efficient similarity joins for near duplicate detection, in: Proceedings of the 17th International Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008, 2008, pp. 131-140.
[22] F.N. Afrati, A.D. Sarma, D. Menestrina, A.G. Parameswaran, J.D. Ullman, Fuzzy joins using MapReduce, in: IEEE 28th International Conference on Data Engineering, ICDE 2012, Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, 2012, pp. 498-509.
[23] R.J. Bayardo, Y. Ma, R. Srikant, Scaling up all pairs similarity search, in: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, 2007, pp. 131-140.
[24] G.S. Manku, A. Jain, A.D. Sarma, Detecting near-duplicates for web crawling, in: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, 2007, pp. 141-150.
[25] B. Chawda, H. Gupta, S. Negi, T.A. Faruquie, L.V. Subramaniam, M.K. Mohania, Processing interval joins on Map-Reduce, in: Proceedings of the 17th International Conference on Extending Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014., 2014, pp. 463-474.
[26] F.N. Afrati, S. Dolev, S. Sharma, J.D. Ullman, Bounds for overlapping interval join on MapReduce. in: Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference, EDBT/ICDT, Brussels, Belgium, March 27th, 2015., 2015, pp. 3-6.
[27] H. Gupta, B. Chawda, S. Negi, T.A. Faruquie, L.V. Subramaniam, M.K. Mohania, Processing multi-way spatial joins on Map-Reduce, in: Joint 2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, 2013, pp. 113-124.
[28] H. Gupta, B. Chawda, \(\epsilon\)-controlled-replicate: An improvedcontrolled-replicate algorithm for multi-way spatial join processing on Map-Reduce, in: Web Information Systems Engineering—WISE 2014—15th International Conference, Thessaloniki, Greece, October 12-14, 2014, Proceedings, Part II, 2014, pp. 278-293.
[29] F. Tauheed, T. Heinis, A. Ailamaki, THERMAL-JOIN: A scalable spatial join for dynamic workloads, in: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31-June 4, 2015, 2015, pp. 939-950.
[30] F.N. Afrati, D. Fotakis, J.D. Ullman, Enumerating subgraph instances using Map-Reduce. in: 29th IEEE International Conference on Data Engineering, ICDE, Brisbane, Australia, April 8-12, 2013, 2013, pp. 62-73.
[31] P. Malhotra, P. Agarwal, G. Shroff, Graph-parallel entity resolution using LSH & IMM, in: Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference, EDBT/ICDT 2014, Athens, Greece, March 28, 2014, 2014, pp. 41-49.
[32] Y. Liu, X. Jiang, H. Chen, J. Ma, X. Zhang, MapReduce-based pattern finding algorithm applied in motif detection for prescription compatibility network, in: Advanced Parallel Processing Technologies, 8th International Symposium, APPT 2009, Rapperswil, Switzerland, August 24-25, 2009, Proceedings, 2009, pp. 341-355.
[33] Nandi, A.; Yu, C.; Bohannon, P.; Ramakrishnan, R., Data cube materialization and mining over mapreduce, IEEE Trans. Knowl. Data Eng., 24, 10, 1747-1759, (2012)
[34] Rohitkumar, K.; Patil, S., Data cube materialization using mapreduce, Int. J. Innov. Res. Comput. Commun. Eng., 11, 2, 6506-6511, (2014)
[35] B. Wang, H. Gui, M. Roantree, M.F. O’Connor, Data cube computational model with Hadoop MapReduce, in: WEBIST 2014—Proceedings of the 10th International Conference on Web Information Systems and Technologies, Volume 1, Barcelona, Spain, 3-5 April, 2014, 2014, pp. 193-199.
[36] F.N. Afrati, S. Sharma, J.D. Ullman, J.R. Ullman, Computing marginals using MapReduce. CoRR, abs/1509.08855, 2015. · Zbl 1390.68194
[37] F.N. Afrati, P. Koutris, D. Suciu, J.D. Ullman, Parallel skyline queries. in: 15th International Conference on Database Theory, ICDT’12, Berlin, Germany, March 26-29, 2012, 2012, pp. 274-284. · Zbl 1352.68076
[38] C. Zhang, F. Li, J. Jestes, Efficient parallel kNN joins for large data in MapReduce, in: 15th International Conference on Extending Database Technology, EDBT’12, Berlin, Germany, March 27-30, 2012, Proceedings, 2012, pp. 38-49.
[39] Lu, W.; Shen, Y.; Chen, S.; Ooi, B. C., Efficient processing of \(k\) nearest neighbor joins using mapreduce, Proc. VLDB, 5, 10, 1016-1027, (2012)
[40] G. Zhou, Y. Zhu, G. Wang, Cache conscious star-join in MapReduce environments, in: 2nd International Workshop on Cloud Intelligence (colocated with VLDB 2013), Cloud-I ’13, Riva del Garda, Trento, Italy, August 26, 2013, 2013, pp. 1:1-1:7.
[41] A. Okcan, M. Riedewald, Processing theta-joins using MapReduce, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, 2011, pp. 949-960.
[42] Zhang, X.; Chen, L.; Wang, M., Efficient multi-way theta-join processing using mapreduce, Proc. VLDB, 5, 11, 1184-1195, (2012)
[43] Yu, Z.; Wang, C.; Thomborson, C. D.; Wang, J.; Lian, S.; Vasilakos, A. V., Multimedia applications and security in mapreduce: opportunities and challenges, Concurr. Comput.: Pract. Exper., 24, 17, 2083-2101, (2012)
[44] H.J. Karloff, S. Suri, S. Vassilvitskii, A model of computation for MapReduce, in: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, 2010, pp. 938-948. · Zbl 1288.68247
[45] M.T. Goodrich, Simulating parallel algorithms in the MapReduce framework with applications to parallel computational geometry. CoRR, abs/1004.4708, 2010.
[46] S. Lattanzi, B. Moseley, S. Suri, S. Vassilvitskii, Filtering: a method for solving graph problems in MapReduce, in: SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, June 4-6, 2011, Co-located with FCRC 2011, 2011, pp. 85-94.
[47] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, E. Upfal, Space-round tradeoffs for MapReduce computations, in: International Conference on Supercomputing, ICS’12, Venice, Italy, June 25-29, 2012, 2012, pp. 235-244.
[48] A. Goel, K. Munagala, Complexity measures for Map-Reduce, and comparison to parallel computing. CoRR, abs/1211.6526, 2012.
[49] Ullman, J. D., Designing good mapreduce algorithms, ACM Crossroads, 19, 1, 30-34, (2012)
[50] Afrati, F. N.; Sarma, A. D.; Salihoglu, S.; Ullman, J. D., Upper and lower bounds on the cost of a map-reduce computation, Proc. VLDB, 6, 4, 277-288, (2013)
[51] F.N. Afrati, J.D. Ullman, Matching bounds for the all-pairs MapReduce problem, in: 17th International Database Engineering & Applications Symposium, IDEAS’13, Barcelona, Spain—October 09-11, 2013, 2013, pp. 3-4.
[52] F.N. Afrati, S. Dolev, S. Sharma, J.D. Ullman, Meta-MapReduce: A technique for reducing communication in MapReduce computations. CoRR, abs/1508.01171, 2015.
[53] B. Fish, J. Kun, Á. D. Lelkes, L. Reyzin, G. Turán, On the computational complexity of mapreduce, in: Distributed Computing—29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, 2015, pp. 1-15. · Zbl 1394.68176
[54] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop Distributed File System, in: 26th Symposium on Mass Storage Systems and Technologies, 2010, pp. 1-10.
[55] Lin, J.; Dyer, C., Data-intensive text processing with mapreduce, Synth. Lect. Hum. Lang. Technol., 3, 1, 1-177, (2010)
[57] O’Malley, O.; Zhang, K.; Radia, S.; Marti, R.; Harrell, C., Hadoop security design. tech. rep, (2009), Yahoo, Inc.
[58] Das, D.; O’Malley, O.; Radia, S.; Zhang, K., Adding security to apache hadoop. hortonworks technical report 1, (2010)
[60] Q. Shen, L. Zhang, X. Yang, Y. Yang, Z. Wu, Y. Zhang, SecDM: Securing data migration between cloud storage systems, in: IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, DASC 2011, 12-14 December 2011, Sydney, Australia, 2011, pp. 636-641.
[61] A. Ruan, A. Martin, TMR: towards a trusted MapReduce infrastructure, in: Eighth IEEE World Congress on Services, SERVICES 2012, Honolulu, HI, USA, June 24-29, 2012, 2012, pp. 141-148.
[62] E. Yoon, A.C. Squicciarini, Toward detecting compromised MapReduce workers through log analysis, in: 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2014, Chicago, IL, USA, May 26-29, 2014, 2014, pp. 41-50.
[63] W. Du, J. Jia, M. Mangal, M. Murugesan, Uncheatable grid computing, in: 24th International Conference on Distributed Computing Systems (ICDCS 2004), 24-26 March 2004, Hachioji, Tokyo, Japan, 2004, pp. 4-11.
[64] W. Wei, J. Du, T. Yu, X. Gu, SecureMR: A service integrity assurance framework for MapReduce, in: Twenty-Fifth Annual Computer Security Applications Conference, ACSAC 2009, Honolulu, Hawaii, 7-11 December 2009, 2009, pp. 73-82.
[65] J. Huang, D.M. Nicol, R.H. Campbell, Denial-of-service threat to Hadoop/YARN clusters with multi-tenancy, in: 2014 IEEE International Congress on Big Data, Anchorage, AK, USA, June 27-July 2, 2014, 2014, pp. 48-55.
[66] Pastore, M.; Pastore, M.; Dulaney, E., Comptia security+ study guide: exam SY0-101, (2006), Wiley
[67] Desmedt, Y., Relay attack, (Encyclopedia of Cryptography and Security, (2011)), 1042
[68] Q. Shen, Y. Yang, Z. Wu, X. Yang, L. Zhang, X. Yu, Z. Lao, D. Wang, M. Long, SAPSC: security architecture of private storage cloud based on HDFS, in: 26th International Conference on Advanced Information Networking and Applications Workshops, WAINA 2012, Fukuoka, Japan, March 26-29, 2012, 2012, pp. 1292-1297.
[69] William, S.; Stallings, W., Cryptography and network security, 4/E, (2006), Pearson Education India
[70] Xiao, Z.; Xiao, Y., Achieving accountable mapreduce in cloud computing, Future Gener. Comput. Syst., 30, 1-13, (2014)
[71] W. Wei, T. Yu, R. Xue, ibigtable: practical data integrity for bigtable in public cloud, in: Third ACM Conference on Data and Application Security and Privacy, CODASPY’13, San Antonio, TX, USA, February 18-20, 2013, 2013, pp. 341-352.
[72] Y. Ding, H. Wang, P. Shi, H. Fu, C. Guo, M. Zhang, Trusted sampling-based result verification on mass data processing, in: Seventh IEEE International Symposium on Service-Oriented System Engineering, SOSE 2013, San Francisco, CA, USA, March 25-28, 2013, 2013, pp. 391-396.
[73] Y. Wang, J. Wei, VIAF: verification-based integrity assurance framework for MapReduce, in: IEEE International Conference on Cloud Computing, CLOUD 2011, Washington, DC, USA, 4-9 July, 2011, 2011, pp. 300-307.
[74] Y. Wang, J. Wei, M. Srivatsa, Y. Duan, W. Du, IntegrityMR: Integrity assurance framework for big data analytics and management applications, in: Proceedings of the 2013 IEEE International Conference on Big Data, 6-9 October 2013, Santa Clara, CA, USA, 2013, pp. 33-40.
[75] Apache Knox, available at: https://knox.apache.org/index.html.
[76] Apache Ranger, available at: http://ranger.incubator.apache.org/.
[77] Project Rhino, available at: https://github.com/intel-hadoop/project-rhino/.
[78] Apache Accumulo, available at: https://accumulo.apache.org/.
[79] I. Roy, S.T.V. Setty, A. Kilzer, V. Shmatikov, E. Witchel, Airavat: Security and privacy for MapReduce, in: Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2010, April 28-30, 2010, San Jose, CA, USA, 2010, pp. 297-312.
[80] A. Khaled, M.F. Husain, L. Khan, K.W. Hamlen, B.M. Thuraisingham, A token-based access control system for RDF data in the clouds, in: Cloud Computing, Second International Conference, CloudCom 2010, November 30-December 3, 2010, Indianapolis, Indiana, USA, Proceedings, 2010, pp. 104-111.
[81] H. Ulusoy, M. Kantarcioglu, E. Pattuk, K.W. Hamlen, Vigiles: Fine-grained access control for MapReduce systems, in: 2014 IEEE International Congress on Big Data, Anchorage, AK, USA, June 27-July 2, 2014, 2014, pp. 40-47.
[82] H. Ulusoy, P. Colombo, E. Ferrari, M. Kantarcioglu, E. Pattuk, GuardMR: Fine-grained security policy enforcement for MapReduce systems, in: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, ASIA CCS’15, Singapore, April 14-17, 2015, 2015, pp. 285-296.
[83] Zhao, J.; Wang, L.; Tao, J.; Chen, J.; Sun, W.; Ranjan, R.; Kolodziej, J.; Streit, A.; Georgakopoulos, D., A security framework in G-hadoop for big data computing across distributed cloud data centres, J. Comput. System Sci., 80, 5, 994-1007, (2014) · Zbl 1310.68043
[84] H. Lin, S. Shen, W. Tzeng, B.P. Lin, Toward data confidentiality via integrating hybrid encryption schemes and Hadoop distributed file system, in: IEEE 26th International Conference on Advanced Information Networking and Applications, AINA, 2012, Fukuoka, Japan, March 26-29, 2012, 2012, pp. 740-747.
[85] M. Moca, G.C. Silaghi, G. Fedak, Distributed results checking for MapReduce in volunteer computing, in: 25th IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May 2011—Workshop Proceedings, 2011, pp. 1847-1854.
[86] Y. Wang, J. Wei, M. Srivatsa, Result integrity check for MapReduce computation on hybrid clouds, in: 6th International Conference on Cloud Computing, 2013, pp. 847-854.
[87] Ding, Y.; Wang, H.; Wei, L.; Chen, S.; Fu, H.; Xu, X., VAWS: constructing trusted open computing system of mapreduce with verified participants, IEICE Trans., 97, D(4), 721-732, (2014)
[88] S.M. Khan, K.W. Hamlen, Hatman: Intra-cloud trust management for Hadoop, in: 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, June 24-29, 2012, 2012, pp. 494-501.
[89] H. Ulusoy, M. Kantarcioglu, E. Pattuk, TrustMR: Computation integrity assurance system for MapReduce, in: 2015 IEEE International Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, October 29-November 1, 2015, 2015, pp. 441-450.
[90] C. Huang, S. Zhu, D. Wu, Towards trusted services: Result verification schemes for MapReduce, in: 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa, Canada, May 13-16, 2012, 2012, pp. 41-48.
[91] Y. Ding, H. Wang, S. Chen, X. Tang, H. Fu, P. Shi, PIIM: method of identifying malicious workers in the MapReduce system with an open environment, in: 8th IEEE International Symposium on Service Oriented System Engineering, SOSE 2014, Oxford, United Kingdom, April 7-11, 2014, 2014, pp. 326-331.
[92] H. Ulusoy, M. Kantarcioglu, E. Pattuk, L. Kagal, AccountableMR: Toward accountable MapReduce systems, in: 2015 IEEE International Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, October 29-November 1, 2015, 2015, pp. 451-460.
[93] Apache Sentry, available at: http://sentry.incubator.apache.org/ and https://blogs.apache.org/sentry/.
[94] Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W. C.; Wallach, D. A.; Burrows, M.; Chandra, T.; Fikes, A.; Gruber, R. E., Bigtable: A distributed storage system for structured data, ACM Trans. Comput. Syst., 26, 2, (2008)
[95] O. Lassila, R.R. Swick, Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation, Feb 1999. Available at: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.
[96] Kaoudi, Z.; Manolescu, I., RDF in the clouds: a survey, VLDB J., 24, 1, 67-91, (2015)
[97] G. Carothers, A. Seabourne, RDF 1.1 N-Triples. W3C Recommendation, Feb 2014. Available at: http://www.w3.org/TR/2014/REC-n-triples-20140225/.
[98] Wang, L.; Tao, J.; Ranjan, R.; Marten, H.; Streit, A.; Chen, J.; Chen, D., G-hadoop: mapreduce across distributed data centers for data-intensive computing, Future Gener. Comput. Syst., 29, 3, 739-750, (2013)
[99] H. Ulusoy, M. Kantarcioglu, B.M. Thuraisingham, L. Khan, Honeypot based unauthorized data access detection in MapReduce systems, in: 2015 IEEE International Conference on Intelligence and Security Informatics, ISI 2015, Baltimore, MD, USA, May 27-29, 2015, 2015, pp. 126-131.
[100] R.C. Merkle, A digital signature based on a conventional encryption function, in: Advances in Cryptology—CRYPTO’87, A Conference on the Theory and Applications of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings, 1987, pp. 369-378.
[101] Lamport, L.; Shostak, R. E.; Pease, M. C., The Byzantine generals problem, ACM Trans. Program. Lang. Syst., 4, 3, 382-401, (1982) · Zbl 0483.68021
[102] G. Fedak, C. Germain, V. Néri, F. Cappello, Xtremweb: A generic global computing system, in: First IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2001), May 15-18, 2001, Brisbane, Australia, 2001, pp. 582-587.
[103] D.P. Anderson, BOINC: A system for public-resource computing and storage, in: 5th International Workshop on Grid Computing, GRID 2004, 8 November 2004, Pittsburgh, PA, USA, Proceedings, 2004, pp. 4-10.
[104] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a not-so-foreign language for data processing, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, 2008, pp. 1099-1110.
[105] Byun, J.-W.; Bertino, E.; Li, N., Purpose based access control of complex data for privacy protection, (Proceedings of the Tenth ACM Symposium on Access Control Models and Technologies, SACMAT ’05, (2005), ACM New York, NY, USA), 102-110
[106] Byun, J.-W.; Li, N., Purpose based access control for privacy protection in relational database systems, VLDB J., 17, 4, 603-619, (2006)
[107] M.R. Randazzo, M. Keeney, E. Kowalski, D. Cappelli, A. Moore, Insider threat study: Illicit cyber activity in the banking and finance sector, 2005.
[108] S.Y. Ko, K. Jeon, R. Morales, The HybrEx model for confidentiality and privacy in cloud computing, in: 3rd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’11, Portland, OR, USA, June 14-15, 2011, 2011.
[109] C. Zhang, E. Chang, R.H.C. Yap, Tagged-MapReduce: A general framework for secure computing with mixed-sensitivity data on hybrid clouds, in: 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2014, Chicago, IL, USA, May 26-29, 2014, 2014, pp. 31-40.
[110] K.Y. Oktay, S. Mehrotra, V. Khadilkar, M. Kantarcioglu, SEMROD: secure and efficient MapReduce over hybrid clouds, in: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31-June 4, 2015, 2015, pp. 153-166.
[111] Z. Zhou, H. Zhang, X. Du, P. Li, X. Yu, Prometheus: Privacy-aware data retrieval on hybrid cloud, in: Proceedings of the IEEE INFOCOM 2013, Turin, Italy, April 14-19, 2013, 2013, pp. 2643-2651.
[112] X. Zhang, C. Liu, S. Nepal, W. Dou, J. Chen, Privacy-preserving layer over MapReduce on cloud, in: 2012 Second International Conference on Cloud and Green Computing, CGC 2012, Xiangtan, Hunan, China, November 1-3, 2012, 2012, pp. 304-310.
[113] X. Zhang, C. Liu, S. Nepal, C. Yang, J. Chen, Privacy preservation over big data in cloud systems, in: Security, Privacy and Trust in Cloud Systems, 2014, pp. 239-257.
[114] E. Blass, R.D. Pietro, R. Molva, M. Önen, PRISM—privacy-preserving search in MapReduce, in: Privacy Enhancing Technologies—12th International Symposium, PETS 2012, Vigo, Spain, July 11-13, 2012. Proceedings, 2012, pp. 180-200.
[115] T. Mayberry, E. Blass, A.H. Chan, PIRMAP: efficient private information retrieval for mapreduce, in: Financial Cryptography and Data Security—17th International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers, 2013, pp. 371-385.
[116] E. Blass, G. Noubir, T.V. Huu, EPiC: Efficient privacy-preserving counting for MapReduce, 2012.
[117] J. Powers, K. Chen, Secure MapReduce power iteration in the cloud. CoRR, abs/1211.3147, 2012.
[118] L. Xu, W. Shi, T. Suh, PFC: privacy preserving FPGA cloud—A case study of MapReduce, in: 2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, June 27-July 2, 2014, 2014, pp. 280-287.
[119] Popa, R. A.; Redfield, C. M.S.; Zeldovich, N.; Balakrishnan, H., Cryptdb: processing queries on an encrypted database, Commun. ACM, 55, 9, 103-111, (2012)
[120] S.D. Tetali, M. Lesani, R. Majumdar, T.D. Millstein, MrCrypt: static analysis for secure cloud computations, in: Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, 2013, pp. 271-286.
[121] J.J. Stephen, S. Savvides, R. Seidel, P. Eugster, Practical confidentiality preserving big data analysis, in: 6th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud ’14, Philadelphia, PA, USA, June 17-18, 2014., 2014.
[122] S. Dolev, Y. Li, S. Sharma, Private and secure secret shared MapReduce—(extended abstract), in: Data and Applications Security and Privacy XXX—30th Annual IFIP WG 11.3 Working Conference, DBSec 2016, Trento, Italy, July 18-21, 2016. Proceedings, 2016.
[123] R. Motwani, Y. Xu, Efficient algorithms for masking and finding quasi-identifiers. 2007.
[124] J. Pei, Y. Tao, J. Li, X. Xiao, Privacy preserving publishing on multiple quasi-identifiers, in: Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29 2009-April 2 2009, Shanghai, China, 2009, pp. 1132-1135.
[125] Loughran, S.; Calero, J. M.A.; Farrell, A.; Kirschnick, J.; Guijarro, J., Dynamic cloud deployment of a mapreduce architecture, IEEE Internet Comput., 16, 6, 40-50, (2012)
[126] Zhou, B.; Pei, J.; Luk, W., A brief survey on anonymization techniques for privacy preserving publishing of social network data, SIGKDD Explor., 10, 2, 12-22, (2008)
[127] Fung, B. C.M.; Wang, K.; Chen, R.; Yu, P. S., Privacy-preserving data publishing: A survey of recent developments, ACM Comput. Surv., 42, 4, (2010)
[128] Adam, N. R.; Wortmann, J. C., Security-control methods for statistical databases: A comparative study, ACM Comput. Surv., 21, 4, 515-556, (1989)
[129] F.M. Malvestuto, M. Moscarini, M. Rafanelli, Suppressing marginal cells to protect sensitive information in a two-dimensional statistical table, in: Proceedings of the Tenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 29-31, 1991, Denver, Colorado, USA, 1991, pp. 252-258.
[130] Chu, P., Cell suppression methodology: the importance of suppressing marginal totals, IEEE Trans. Knowl. Data Eng., 9, 4, 513-523, (1997)
[131] C. Dwork, Differential privacy, in: Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, 2006, pp. 1-12. · Zbl 1133.68330
[132] X. Zhang, C. Yang, S. Nepal, C. Liu, W. Dou, J. Chen, A MapReduce based approach of scalable multidimensional anonymization for big data privacy preservation on cloud, in: 2013 International Conference on Cloud and Green Computing, Karlsruhe, Germany, September 30-October 2, 2013, 2013, pp. 105-112.
[133] J.T. Trostle, A. Parrish, Efficient computationally private information retrieval from anonymity or trapdoor groups, in: Information Security—13th International Conference, ISC 2010, Boca Raton, FL, USA, October 25-28, 2010, Revised Selected Papers, 2010, pp. 114-128.
[134] Chor, B.; Kushilevitz, E.; Goldreich, O.; Sudan, M., Private information retrieval, vol. 45, 965-981, (1998), ACM
[135] H. Lipmaa, An oblivious transfer protocol with log-squared communication, in: Information Security, 8th International Conference, ISC 2005, Singapore, September 20-23, 2005, Proceedings, pp. 314-328, 2005. · Zbl 1159.68444
[136] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: Advances in Cryptology—EUROCRYPT’99, International Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, 1999, pp. 223-238. · Zbl 0933.94027
[137] C. Gentry, Fully homomorphic encryption using ideal lattices, in: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31-June 2, 2009, 2009, pp. 169-178. · Zbl 1304.94059
[138] C. Gentry, S. Halevi, Implementing gentry’s fully-homomorphic encryption scheme, in: Advances in Cryptology—EUROCRYPT 2011—30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, 2011, pp. 129-148. · Zbl 1281.94026
[139] Shamir, A., How to share a secret, Commun. ACM, 22, 11, 612-613, (1979) · Zbl 0414.94021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.