zbMATH — the first resource for mathematics

A persistence landscapes toolbox for topological statistics. (English) Zbl 1348.68186
Summary: Topological data analysis provides a multiscale description of the geometry and topology of quantitative data. The persistence landscape is a topological summary that can be easily combined with tools from statistics and machine learning. We give efficient algorithms for calculating persistence landscapes, their averages, and distances between such averages. We discuss an implementation of these algorithms and some related procedures. These are intended to facilitate the combination of statistics and machine learning with topological data analysis. We present an experiment showing that the low-dimensional persistence landscapes of points sampled from spheres (and boxes) of varying dimensions differ.

68T05 Learning and adaptive systems in artificial intelligence
55N35 Other homology theories in algebraic topology
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
Full Text: DOI arXiv
[1] Adcock, A.; Carlsson, E.; Carlsson, G., The ring of algebraic functions on persistence bar codes, (04 2013)
[2] Agarwal, Pankaj K.; Efrat, Alon; Sharir, Micha, Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications, SIAM J. Comput., 29, 39-50, (1999) · Zbl 0949.68179
[3] Bauer, U., Kerber, M., Reininghaus, J., 2014. PHAT, Persistent Homology Algorithm Toolbox, accessed 11/15/2013. · Zbl 1402.65187
[4] Bendich, P.; Chin, S.; Clarke, J.; deSena, J.; Harer, J.; Munch, E.; Newman, A.; Porter, D.; Rouse, D.; Strawn, N.; Watkins, A., Topological and statistical behavior classifiers for tracking applications, (2014)
[5] Bendich, P.; Marron, J. S.; Miller, E.; Pieloch, A.; Skwerer, S., Persistent homology analysis of brain artery trees, Ann. Appl. Stat., 10, 1, 198-218, (2016)
[6] Bubenik, P., Statistical topological data analysis using persistence landscapes, J. Mach. Learn. Res., 16, 77-102, (2015) · Zbl 1337.68221
[7] Bubenik, P.; Scott, J. A., Categorification of persistent homology, Discrete Comput. Geom., 51, 3, 600-627, (2014) · Zbl 1295.55005
[8] Carlsson, G., Topology and data, Bull. Am. Math. Soc. (N.S.), 46, 2, 255-308, (2009) · Zbl 1172.62002
[9] Carlsson, G.; Ishkhanov, T.; de Silva, V.; Zomorodian, A., On the local behavior of spaces of natural images, Int. J. Comput. Vis., 76, 1-12, (2008)
[10] Carrière, M.; Oudot, S. Y.; Ovsjanikov, M., Stable topological signatures for points on 3d shapes, Eurographics Symposium on Geometry Processing 2015, Comput. Graph. Forum, 34, 5, (2015)
[11] Chazal, F.; Fasy, B. T.; Lecci, F.; Michel, B.; Rinaldo, A.; Wasserman, L., Subsampling methods for persistent homology, (06 2014)
[12] Chazal, F.; Fasy, B. T.; Lecci, F.; Rinaldo, A.; Singh, A.; Wasserman, L., On the bootstrap for persistence diagrams and landscapes, Model. Anal. Inf. Syst., 20, 6, 96-105, (2014)
[13] Chazal, Frederic; de Silva, Vin; Glisse, Marc; Oudot, Steve, The structure and stability of persistence modules, (2012) · Zbl 1362.55002
[14] Chepushtanova, S.; Emerson, T.; Hanson, E.; Kirby, M.; Motta, F.; Neville, R.; Peterson, C.; Shipman, P.; Ziegelmeier, L., Persistence images: an alternative persistent homology representation, (07 2015)
[15] Chung, M. K.; Bubenik, P.; Kim, P. T., Persistence diagrams in cortical surface data, (Information Processing in Medical Imaging (IPMI) 2009, Lect. Notes Comput. Sci., vol. 5636, (2009)), 386-397
[16] Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J., Stability of persistence diagrams, Discrete Comput. Geom., 37, 103-120, (2007) · Zbl 1117.54027
[17] Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J., Extending persistence using poincare and Lefschetz duality, Found. Comput. Math., 9, 79-103, (2009) · Zbl 1189.55002
[18] Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J.; Mileyko, Y., Lipschitz functions have \(l_p\)-stable persistence, Found. Comput. Math., 10, 127-139, (2010) · Zbl 1192.55007
[19] Cortes, C.; Vapnik, V., Support-vector networks, Mach. Learn., 20, (1995) · Zbl 0831.68098
[20] de Silva, V.; Ghrist, R., Coverage in sensor networks via persistent homology, Algebraic Geom. Topol., 7, 339-358, (2007) · Zbl 1134.55003
[21] Di Fabio, B.; Ferri, M., Comparing persistence diagrams through complex vectors, (2015)
[22] Donatini, P.; Frosini, P.; Lovato, A., Size functions for signature recognition, (Proceedings of the SPIE’s Workshop “Vision Geometry VII”, SPIE, vol. 3454, (1998)), 178-183
[23] Edelsbrunner, H.; Harer, J., Computational topology, (2010), American Mathematical Society · Zbl 1193.55001
[24] Edelsbrunner, H.; Letscher, D.; Zomorodian, A., Topological persistence and simplification, Discrete Comput. Geom., 28, 511-533, (2002) · Zbl 1011.68152
[25] Efrat, A.; Itai, A.; Katz, M. J., Geometry helps in bottleneck matching and related problems, Algorithmica, 31, 2001, (2001) · Zbl 0980.68101
[26] Fasy, B. T.; Kim, J.; Lecci, F.; Maria, C., Introduction to the R package TDA, (2014)
[27] Fasy, B. T.; Lecci, F.; Rinaldo, A.; Wasserman, L.; Balakrishnan, S.; Singh, A., Confidence sets for persistence diagrams, Ann. Stat., 42, 6, 2301-2339, (2014) · Zbl 1310.62059
[28] Ferri, M.; Frosini, P.; Lovato, A.; Zambelli, C., Point selection: a new comparison scheme for size functions, with an application to monogram recognition, (Pong, T.; Chin, R., Proceedings Third Asian Conference on Computer Vision, Lect. Notes Comput. Sci., vol. 1351, (1998), Springer-Verlag Berlin, Heidelberg), 329-337
[29] Gamble, J.; Heo, G., Exploring uses of persistent homology for statistical analysis of landmark-based shape data, J. Multivar. Anal., 101, 9, 2184-2199, (2010) · Zbl 1203.62116
[30] Ghrist, R., Barcodes: the persistent topology of data, Bull. Am. Math. Soc. (N.S.), 45, 1, 61-75, (2008) · Zbl 1391.55005
[31] Hershberger, J., Finding the upper envelope of n line segments in \(o(n \log n)\) time, Inf. Process. Lett., 33, 169-174, (1989) · Zbl 0689.68058
[32] Hershberger, J., Upper envelope onion peeling, Lect. Notes Comput. Sci., 447, 368-379, (1990)
[33] Kahle, M.; Meckes, E., Limit theorems for Betti numbers of random simplicial complexes, Homology Homotopy Appl., 15, 1, 343-374, (2013) · Zbl 1268.05180
[34] Kovacev-Nikolic, V.; Bubenik, P.; Nikolic, D.; Heo, G., Using persistent homology and dynamical distances to analyze protein binding, Stat. Appl. Genet. Mol. Biol., 15, 1, 19-38, (2016) · Zbl 1343.92380
[35] Maria, C., 2014. GUDHI, simplicial complexes and persistent homology packages. · Zbl 1402.57001
[36] Mischaikow, K.; Nanda, V., Morse theory for filtrations and efficient computation of persistent homology, Discrete Comput. Geom., 50, 330-353, (2013) · Zbl 1278.57030
[37] Morozov, D., 2014. The Dionysus software project, accessed 11/15/2013.
[38] Munch, E.; Turner, K.; Bendich, P.; Mukherjee, S.; Mattingly, J.; Harer, J., Probabilistic Fréchet means for time varying persistence diagrams, Electron. J. Stat., 9, 1, 1173-1204, (2015) · Zbl 1348.68285
[39] Nanda, V., 2014. The Perseus software project, accessed 11/15/2013.
[40] Nicolau, M.; Levine, Ar. J.; Carlsson, G., Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Proc. Natl. Acad. Sci., 108, 17, 7265-7270, (2011)
[41] Perea, J. A.; Harer, J., Sliding windows and persistence: an application of topological methods to signal analysis, Found. Comput. Math., 15, 3, 799-838, (2015) · Zbl 1325.37054
[42] Reininghaus, J.; Huber, S.; Bauer, U.; Kwitt, R., A stable multiscale kernel for topological machine learning, (Proc. 2015 IEEE Conf. Comp. Vision & Pat. Rec, CVPR ’15, (2015))
[43] Robins, V.; Turner, K., Principal component analysis of persistent homology rank functions with case studies of spatial point patterns, sphere packing and colloids, (07 2015)
[44] Robinson, A.; Turner, K., Hypothesis testing for topological data analysis, (2013)
[45] Sexton, M., Vejdemo-Johansson, M., 2014. PLEX library, accessed 11/15/2013.
[46] Turner, K.; Mileyko, Y.; Mukherjee, S.; Harer, J., Fréchet means for distributions of persistence diagrams, Discrete Comput. Geom., 52, 1, 44-70, (2014) · Zbl 1296.68182
[47] Wasserman, L., All of statistics, Springer Texts in Statistics, (2004), Springer-Verlag New York, A concise course in statistical inference
[48] Williams, T., Kelley, C., 2011. Gnuplot 4.5: an interactive plotting program.
[49] Zomorodian, A.; Carlsson, G., Computing persistent homology, Discrete Comput. Geom., 33, 249-274, (2005) · Zbl 1069.55003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.