×

zbMATH — the first resource for mathematics

Sur les représentations non ramifiées des groupes réductifs p- adiques; l’exemple de GSp(4). (On the non-ramified representations of p- adic reductive groups; the example GSp(4)). (French) Zbl 0662.22011
Bull. Soc. Math. Fr. 116, No. 1, 15-42 (1988); corrigendum ibid. 134, No. 3, 447-449 (2006).
The main aim of the paper is to describe irreducible non-ramified representations of split reductive groups over local fields. The author’s approach is based on Macdonald’s formulas for spherical functions [I. G. Macdonald, Spherical functions on a group of p-adic type (Publ. Ramanujan Inst. 2, 1971; Zbl 0302.43018)]. As an example the author studies such representations for the group \(GSp_ 4\). He describes all non-ramified representations, and studies some of their properties (the existence of the Whittaker model, unitarity, etc.). Some of these properties are studied also for non-ramified representations of arbitrary split groups.
Reviewer: S.I.Gel’fand

MSC:
22E50 Representations of Lie and linear algebraic groups over local fields
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] BERNSTEIN (I.N.) . - Le “centre” de Bernstein , Représentations des groupes réductifs sur un corps local, p. 1-32. - Paris, Hermann, 1984 . Zbl 0599.22016 · Zbl 0599.22016
[2] BERNSTEIN (I.N.) and ZELEVINSKII (A.V.) . - Induced representation of reductive p-adic groups I , Ann. Sci. École Norm. Sup., t. 10, 1977 , p. 441-472. Numdam | MR 58 #28310 | Zbl 0412.22015 · Zbl 0412.22015 · numdam:ASENS_1977_4_10_4_441_0 · eudml:82002
[3] BOREL (A.) . - Admissible Representations of a Semisimple Group over a Local Field with Vector Fixed under an Iwahori Subgroup , Invent. Math., t. 35, 1976 , p. 233-259. MR 56 #3196 | Zbl 0334.22012 · Zbl 0334.22012 · doi:10.1007/BF01390139 · eudml:142406
[4] BOREL (A.) and WALLACH (N.) . - Continuous cohomology, discrete subgroups, and representations of reductive groups . - Princeton, Princeton University Press, 1980 . MR 83c:22018 | Zbl 0443.22010 · Zbl 0443.22010
[5] BOURBAKI (N.) . - Groupes et algèbres de Lie , chap. 4, 5 et 6. - Paris, Hermann, 1968 . Zbl 0483.22001 · Zbl 0483.22001
[6] BRUHAT (F.) et TITS (J.) . - Groupes réductifs sur un corps local I , Inst. Hautes Études Sci. Publ. Math., t. 41, 1972 , p. 1-251. Numdam | MR 48 #6265 | Zbl 0254.14017 · Zbl 0254.14017 · doi:10.1007/BF02715544 · numdam:PMIHES_1972__41__5_0 · eudml:103918
[7] CARTIER (P.) . - Representations of p-adic groups : A survey, Automorphic forms, representations and L-functions , p. 111-155. - Providence, Amer. Math. Soc., 1979 (Proc. Symp. Pure Math., 33). MR 81e:22029 | Zbl 0421.22010 · Zbl 0421.22010
[8] CASSELMAN (W.) . - Introduction to the theory of admissible representations of p-adic reductive groups , notes polycopiées.
[9] CASSELMAN (W.) . - The Steinberg character as a true character , Harmonic Analysis on homogeneous spaces p. 413-417. - Providence, Amer. Math. Soc., 1973 (Proc. Symp. Pure Math., n^\circ 26). MR 49 #3039 | Zbl 0289.22017 · Zbl 0289.22017
[10] CASSELMAN (W.) . - The Unramified principal series of p-adic groups I. The spherical function , Comp. Math., t. 40, n^\circ 3, 1980 , p. 387-406. Numdam | MR 83a:22018 | Zbl 0472.22004 · Zbl 0472.22004 · numdam:CM_1980__40_3_387_0 · eudml:89444
[11] GINSBURG (V.) . - Deligne-Langlands conjecture and representations of affine Hecke algebras , prépublication, 1985 .
[12] IWAHORI (N.) and MATSUMOTO (H.) . - On some Bruhat decompositions and the structure of the Hecke ring of the p-adic groups , Inst. Hautes Études Sci. Publ. Math., t. 25, 1965 , p. 5-48. Numdam | MR 32 #2486 | Zbl 0228.20015 · Zbl 0228.20015 · doi:10.1007/BF02684396 · numdam:PMIHES_1965__25__5_0 · eudml:103854
[13] KEYS (D.) . - On the decomposition of reducible principal series representations of p-adic Chevalley groups , Pacific J. Math., t. 101, 1982 , p. 351-388. Article | MR 84d:22032 | Zbl 0438.22010 · Zbl 0438.22010 · doi:10.2140/pjm.1982.101.351 · minidml.mathdoc.fr
[14] KAZHDAN (D.) and LUSZTIG (G.) . - Proof of the Deligne-Langlands conjecture for Hecke algebras , prépublication, 1985 . · Zbl 0613.22004
[15] LUSZTIG (G.) . - Some examples of square integrable representations of semi-simple p-adic groups , Trans. Amer. Math. Soc., t. 277, 1983 , p. 623-653. MR 84j:22023 | Zbl 0526.22015 · Zbl 0526.22015 · doi:10.2307/1999228
[16] MACDONALD (I.G.) . - Spherical functions on a p-adic Chevalley group , Bull. Amer. Math. Soc., t. 74, 1968 , p. 520-525. Article | MR 36 #5141 | Zbl 0273.22012 · Zbl 0273.22012 · doi:10.1090/S0002-9904-1968-11989-5 · minidml.mathdoc.fr
[17] MACDONALD (I.G.) . - Spherical functions on a group of p-adic type . - Univ. of Madras, 1971 . Zbl 0302.43018 · Zbl 0302.43018
[18] MULLER (I.) . - Intégrales d’entrelacement pour un groupe de Chevalley sur un corps p-adique , Analyse Harmonique sur les groupes de Lie, p. 367-403. Berlin, Springer-Verlag, 1979 (Lecture Notes in Math. 739). MR 81f:22032 | Zbl 0477.43010 · Zbl 0477.43010
[19] RODIER (F.) . - Modèles de Whittaker des représentations admissibles des groupes réductifs p-adiques déployés , C.R. Acad. Sci. Paris Sér. I Math., t. 275, 1972 , p. 1045-1048. MR 47 #3602 | Zbl 0243.22003 · Zbl 0243.22003
[20] RODIER (F.) . - Décomposition de la série principale des groupes réductifs p-adiques , Non commutative Harmonic Analysis and Lie groups, p. 408-423. Berlin, Springer-Verlag, 1981 (Lecture Notes in Math., 880). MR 83i:22029 | Zbl 0465.22009 · Zbl 0465.22009
[21] TADIC (M.) . - Classification of unitary representations in irreducible representations of general linear group , Ann. Sci. École Norm. Sup., t. 19, 1986 , p. 335-382. Numdam | MR 88b:22021 | Zbl 0614.22005 · Zbl 0614.22005 · numdam:ASENS_1986_4_19_3_335_0 · eudml:82179
[22] ZELEVINSKII (A.V.) . - Induced representations of reductive p-adic groups II. On irreducible representations of GL(n) , Ann. Sci. École Norm. Sup., t. 13, 1980 , p. 165-210. Numdam | MR 83g:22012 | Zbl 0441.22014 · Zbl 0441.22014 · numdam:ASENS_1980_4_13_2_165_0 · eudml:82048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.