zbMATH — the first resource for mathematics

Comportement semi-classique pour l’opérateur de Schrödinger à potentiel périodique. (Semi-classical behaviour of the Schrödinger operator with periodic potential). (French) Zbl 0662.35023
The Schrödinger operator with a periodic potential is considered. Let V be a smooth periodic function, we study the semi-classical behavior for a continuum spectrum of \(-h^ 2\Delta +V\) (h\(\to 0)\). We are interested in localization and width of bands. We give the interaction matrix up to an exponentially small error, measured by Agmon’s distance between the wells. A detailed investigation of the spectrum is made for the case where V has one nondegenerate minima per unit cell. We also investigate the spectral properties of \(-h^ 2\Delta +V+\Delta V,\) where \(\Delta\) V is a smooth positive perturbation with compact support.

35J10 Schrödinger operator, Schrödinger equation
35P05 General topics in linear spectral theory for PDEs
Full Text: DOI
[1] Berthier, A.M, Ann. sci. ecole norm. sup, 15, 1-15, (1982), (4)
[2] Callaway, J, Energy band theory, (1964), Academic Press New York/London · Zbl 0121.23303
[3] Carmona, R; Simon, B, Pointwise bounds on eigenfunctions and wave packets in N. body quantum systems, Comm. mah. phys., 80, 59-98, (1981) · Zbl 0464.35085
[4] Eastham, M.S.P, The spectral theory of periodic differential equation, (1974), Scottish Academic Edinburgh/London · Zbl 0288.34012
[5] Harrell, E.M, On the rate of asymptotic eigenvalue degeneracy, Comm. math. phys., 60, 73-95, (1978) · Zbl 0395.34023
[6] Harrell, E.M, Double wells, Comm. math. phys., 75, 239-261, (1980) · Zbl 0445.35036
[7] Harrell, E.M, The band-structure of a one-dimensional, periodic system in a scaling limit, Ann. physics, 119, 351-369, (1979) · Zbl 0412.34013
[8] Helffer, B; Sjöstrand, J, Multiple wells in the semiclassical limit I, Comm. partial differential equations, 9, 4, 337-408, (1984) · Zbl 0546.35053
[9] Helffer, B; Sjöstrand, J, Puits multiples en limite semi-classique. II. interaction moléculaire-symétries-perturbation, Ann. inst. H. Poincaré, 42, 2, 127-212, (1985) · Zbl 0595.35031
[10] Helffer, B; Sjöstrand, J, Multiple wells in the semiclassical limit. III. interaction through non-resonant wells, Math. nachr., 124, 263-313, (1985) · Zbl 0597.35023
[11] \scJ. Keller et M. Weinstein, Hill’s equation with a large potential, Stanford University, preprint. · Zbl 0578.34038
[12] Kittel, C, Introduction to solid state physics, (1976), Wiley
[13] Outassourt, A; Outassourt, A, Deuxième note: perturbation d’un potentiel périodique en limite semi-classique, C. R. acad sci. Paris ser. I, C. R. acad. sci. Paris ser. I math., 307, No. 3, (1985) · Zbl 0601.35087
[14] Rajaraman, R, Solitons and instantons, (1982), North-Holland Amsterdam/New York/Oxford · Zbl 0493.35074
[15] Reed, M; Simon, B, ()
[16] Simon, B, Instantons, double wells and large deviations, Bull. amer. math. soc. (N.S), 8, No. 2, (1983) · Zbl 0529.35059
[17] Simon, B, Semiclassical analysis of low lying eigenvalues. I. non-degenerate minima: asymptotic expansions, Ann. inst. H. Poincaré, 38, 295-307, (1983) · Zbl 0526.35027
[18] Simon, B, Semiclassical analysis of low lying eigenvalues. II. tunneling, Ann. of math., 120, 89-118, (1984) · Zbl 0626.35070
[19] Simon, B, Semiclassical analysis of low lying eigenvalues. III. width of the ground state band in strongly coupled solid, Ann. physics., 158, No. 2, 415-420, (1984) · Zbl 0596.35028
[20] Simon, B, Semiclassical analysis of low lying eigenvalues. IV. the flea on the elephant, J. funct. anal., 63, 123-136, (1985) · Zbl 0652.35090
[21] Jona-Lasinio, G; Martinelli, F; Scoppola, E, Multiple tunnelings in d-dimensions: A quantum particle in a hierarchical potential, Inst. H. Poincaré, ann., 42, No. 1, 73-108, (1985) · Zbl 0586.35030
[22] \scA. Martinez, Estimations de l’effet tunnel pour le double puits, Université de Paris-Sud, preprint. · Zbl 0613.35022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.