×

Laws of large numbers for semimartingales with applications to stochastic regression. (English) Zbl 0662.60043

Strong laws of large numbers for matrix-normalized vector-valued local martingales are established. The results are derived from strong laws for positive local submartingales and purely discontinuous local martingales and a Borel-Cantelli-type lemma for local martingales of finite variation. The multivariate strong laws are applied to study strong consistency of estimates in stochastic linear regression models.
Reviewer: A.Le Breton

MSC:

60F15 Strong limit theorems
62J05 Linear regression; mixed models
60G42 Martingales with discrete parameter
Full Text: DOI

References:

[1] Anderson, T.W., Taylor, J.: Strong consistency of least squares estimators in dynamic models. Ann Stat7, 484-489 (1979) · Zbl 0407.62040 · doi:10.1214/aos/1176344670
[2] Bouzar, N.: A form of the Borel-Cantelli lemma. Adv. Math.55, 211-216 (1985) · Zbl 0585.60042 · doi:10.1016/0001-8708(85)90089-1
[3] Chen, L.H.Y.: A short note on the conditional Borel-Cantelli lemma. Ann. Probab.6, 699-700 (1978) · Zbl 0377.60037 · doi:10.1214/aop/1176995492
[4] Christopeit, N.: Quasi-least-squares estimation in semimartingale regression models. Stochastics16, 255-278 (1986) · Zbl 0586.62137
[5] Christopeit, N., Helmes, K.: Strong consistency of least squares estimators in linear regression models. Ann. Stat.8, 778-788 (1980) · Zbl 0468.62060 · doi:10.1214/aos/1176345070
[6] Chow, Y.S.: Local convergence of martingales and the law of large numbers. Ann. Math. Stat.36, 552-558 (1965) · Zbl 0134.34003 · doi:10.1214/aoms/1177700166
[7] Dellacherie, C., Meyer, P.-A.: Probabilités et potential. Chap. V à VIII. Théorie des martingales. Paris: Hermann 1980
[8] Dubins, L.E., Freedman, D.A.: A sharper form of the Borel-Cantelli lemmas and the strong law. Ann. Math. Stat.23, 493-507 (1965)
[9] Elton, J.: A law of large numbers for identically distributed martingale differences. Ann. Probab.9, 405-412 (1981) · Zbl 0463.60039 · doi:10.1214/aop/1176994414
[10] Freedman, D.: Another note on the Borel-Cantelli lemma and the strong law,with the Poisson approximation as a by-product. Ann. Probab.1, 910-925 (1973) · Zbl 0301.60025 · doi:10.1214/aop/1176996800
[11] Hill, T.P.: Conditional generalizations of strong laws which conclude the partial sums converge almost surely. Ann. Probab.10, 828-830 (1982) · Zbl 0486.60028 · doi:10.1214/aop/1176993792
[12] Hill, T.P.: A stronger form of the Borel-Cantelli lemma. III. J. Math. 27, 240-243 (1983) · Zbl 0511.60031
[13] Jacod, J.: Calcul stochastique et problèmes de martingales. Lect. Notes Math. p. 714. Berlin Heidelberg New York Tokyo: Springer 1979 · Zbl 0414.60053
[14] Kabanov, Ju. M., Liptser, R.S., Shiryaev, A.N.: Absolute continuity and singularity of locally absolutely continuous probability distributions, I. Math. USSR Sb.107 (149),3 (11), 364-415 (1978) · Zbl 0402.60039
[15] Kallenberg, Q.: On the existence and path properties of stochastic integrals. Ann. Probab.3, 262-280 (1975) · Zbl 0307.60050 · doi:10.1214/aop/1176996397
[16] Kaufmann, H.: On the strong law of large numbers for multivariate martingales. Stoch. Processes Appl.26, 73-85 (1987) · Zbl 0632.60040 · doi:10.1016/0304-4149(87)90051-2
[17] Lai, T.L., Wei, C.Z.: Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Stat.10, 154-166 (1982) · Zbl 0649.62060 · doi:10.1214/aos/1176345697
[18] Le Breton, A., Musiela, M.: Une loi des grands nombres pour les martingales locales continues vertorielles et son application en regression linéaire stochastique. C. R. Acad. Sc. Paris, Ser.303, 421-424 (1986) · Zbl 0606.60036
[19] Lenglart, E.: Convergence comparée des processus. Stochastics2, 287-310 (1979) · Zbl 0409.60046
[20] Lepingle, D.: Sur le comportement asymptotique des martingales locales. Seminaire de Probabilités XII. Lect. Notes Math. vol. 649, pp. 148-161. Berlin HeidelbergNew York Tokyo: Springer 1977
[21] Liptser, R.S.: A strong law of large numbers for local martingales. Stochastics3, 217-228 (1980) · Zbl 0435.60037
[22] Liptser, R.S., Shirvayev, A.N.: Theory of martingales. Moscow: Nauka 1986
[23] Melnikov, A.V.: The law of large numbers for multidimensional martingales. Soviet. Math. Dokl.33, 131-135 (1986) · Zbl 0605.60047
[24] Metivier, M.: Semimartingales. Berlin: de Gruyter 1982
[25] Neveu, J.: Martingales temps discret. Paris, Masson 1972 · Zbl 0235.60010
[26] Novikov, A.A.: Consistency of least squares estimates in regression models with martingale errors. Steklov Seminar 1984. In: Krylov, N.V., Liptser, R.S., Novikov, A.A. (eds.). Statistics and control of stochastic processes. Translation series in mathematics and engineering. New York: Optimization Software, Inc., Publications Division 1985
[27] Rosi?ski, J., Woyczy?ski, W.A.: On Ito stochastic integration with respect top-stable motion: inner clock, integrability of sample paths, double and multiple integrals. Ann. Probab.14, 271-286 (1986) · Zbl 0594.60056 · doi:10.1214/aop/1176992627
[28] Solo, V.: Topics in advanced time series analysis. Lectures in Probability and Statistics. Lecture Notes Math, vol. 1215, pp. 165-328. Berlin Heidelberg New York Tokyo Springer 1986 · Zbl 0601.62108
[29] Stout, W.F.: Almost sure convergence. New York: Academic Press 1974 · Zbl 0321.60022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.