Khater, A. H.; El-Attary, M. A.; El-Sabbagh, M. F.; Callebaut, D. K. Two-dimensional magnetohydrodynamic equilibria. (English) Zbl 0662.76139 Astrophys. Space Sci. 149, No. 2, 217-223 (1988). For the two-dimensional MHD equilibria, the system of ideal MHD equations is reduced to a single nonlinear equation of the magnetic potential as a ‘Sh-Gordon equation’. A set of analytical solutions is presented which are adequate for describing parallel filaments of a diffused magnetized plasma suspended horizontally in equilibrium in a uniform gravitational field. Cited in 1 Document MSC: 76W05 Magnetohydrodynamics and electrohydrodynamics 76X05 Ionized gas flow in electromagnetic fields; plasmic flow Keywords:Grad-Shavranov equation; two-dimensional MHD equilibria; ideal MHD equations; ‘Sh-Gordon equation’; diffused magnetized plasma PDF BibTeX XML Cite \textit{A. H. Khater} et al., Astrophys. Space Sci. 149, No. 2, 217--223 (1988; Zbl 0662.76139) Full Text: DOI References: [1] Amann, H.: 1976,J. Diff. Eqns 21, 263. · Zbl 0319.35039 [2] Bodin, H. B. and Keen B. E: 1977,Rep. Prog. Phys. 40, 1415. [3] Callebaut, D. K. and Khater, A. H.: 1976, in C. Moser (ed.),CECAM Workshop on Plasma Physics Applied to Active Phenomena on the Sun, Orsay, p. 20. [4] Callebaut, D. K. and Khater, A. H.: 1977a,III Int. Conf. (Kiev), Trieste. [5] Callebaut, D. K. and Khater, A. H.: 1977b, inVIII Europe Conf. on Controlled Fusion and Plasma Physics, Prague, p. 149. [6] Callebaut, D. K. and Khater, A. H.: 1979,Bull. Am. Phys. Soc. 24, 948. [7] Callebaut, D. K. and Khater, A. H.: 1980,Proc. Int. Conf. Plasma Phys. 1, 10bI-01. [8] El-Sabbagh, M. F.: 1988,Nuovo Cimento (in press). [9] Grauel, A.: 1985,Physica 132A, 557. · Zbl 0653.35073 [10] Khater, A. H. and Obied Allah, M. H.: 1984,Astrophys. Space Sci. 106, 245. · Zbl 0582.76048 [11] Khater, A. H., El-Sheikh, M. G., and Callebaut, D. K.: 1988a,Astrophys. Space Sci. 145, 277. [12] Khater, A. H., Callebaut, D. K., and El-Sheikh, M. G.: 1988b,Int. J. Math. Modeling (in press). [13] Khater, A. H., El-Sabbagh, M. F., and Callebaut, D. K. 1988c,Computers & Math. with Applications (in press). [14] Khater, A. H., El-Sabbagh, M. F., and Callebaut, D. K.: 1988d,Ann. Soc. Sci. Bruxelles (in press). [15] Khater, A. H., El-Sabbagh, M. F., and Callebaut, D. K.: 1988e,J. Plasma Phys. (in press). [16] Lamb, G. L.: 1980,Elements of Soliton Theory, John Wiley and Sons, New York. · Zbl 0445.35001 [17] Lerche, I. and Low, B. C.: 1982,Physica 4D, 293. [18] Low, B. C.: 1975,Astrophys. J. 197, 251. [19] Low, B. C., Hundhausen, J. A., and Zweibel, E. G.: 1983,Phys. Fluids 26, 2731. · Zbl 0529.76118 [20] Movsesyants, Yu. B.: 1987,Physica 140A, 554. [21] Steeb, W. H., Kloke, M., Spieker, B. M., and Grensing, D.: 1985,Z. Phys. C 28 241. [22] Webb, G. M.: 1986,Solar Phys. 106, 104. [23] Weiss, J.: 1984,J. Math. Phys. 25, 13. · Zbl 0565.35094 [24] Zakharov, V. E., Manakov, S. V., Novikov, S. P., and Petaevzky, L. P.: 1980,Soliton Theory, Nauka, Moscow (in Russian). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.