Role of seasonality on predator-prey-subsidy population dynamics. (English) Zbl 1343.92422

Summary: The role of seasonality on predator-prey interactions in the presence of a resource subsidy is examined using a system of non-autonomous ordinary differential equations (ODEs). The problem is motivated by the Arctic, inhabited by the ecological system of arctic foxes (predator), lemmings (prey), and seal carrion (subsidy). We construct two nonlinear, nonautonomous systems of ODEs named the Primary Model, and the \(n\)-Patch Model. The Primary Model considers spatial factors implicitly, and the \(n\)-Patch Model considers space explicitly as a “Stepping Stone” system. We establish the boundedness of the dynamics, as well as the necessity of sufficiently nutritional food for the survival of the predator. We investigate the importance of including the resource subsidy explicitly in the model, and the importance of accounting for predator mortality during migration. We find a variety of non-equilibrium dynamics for both systems, obtaining both limit cycles and chaotic oscillations. We were then able to discuss relevant implications for biologically interesting predator-prey systems including subsidy under seasonal effects. Notably, we can observe the extinction or persistence of a species when the corresponding autonomous system might predict the opposite.


92D25 Population dynamics (general)
Full Text: DOI


[1] Abrams, P. A., The evolution of predator-prey interactionstheory and evidence, Annu. Rev. Ecol. Syst., 31, 79-105, (2000)
[2] Adams, L. G.; Farley, S. D.; Stricker, C. A.; Demma, D. J.; Roffler, G. H.; Miller, D. C.; Rye, R. O., Are inland wolf-ungulate systems influenced by marine subsidies of Pacific salmon?, Ecol. Appl., 1, 20, 251-262, (2010)
[3] Aebischer, N. J.; Baker, S. E.; Johnson, P. J.; Macdonald, D. W.; Reynolds, J. C., Ecologyhunting and fox numbers in the united kingdom, Nature, 400, 423, (2003), 400-400
[4] Audet, A. M.; Robins, C.; Larivère, S., Alopex lagopus, Am. Soc. Mammal., 713, 1-10, (2002)
[5] Ayala, F. J.; Gilpin, M. E.; Ehrenfeld, J. G., Competition between speciestheoretical models and experimental tests, Theor. Popul. Biol., 4, 3, 331-356, (1973)
[6] Baker, P. J.; Harris, S., Does culling reduce fox (vulpes vulpes) density in commercial forests in wales, UK?, Eur. J. Wildl. Res., 52, 2, 99-108, (2006)
[7] Baker, P. J.; Harris, S.; Webbon, C. C., Ecologyeffect of british hunting ban on fox numbers, Nature, 419, 878, (2002), 34-34
[8] Barnes, R. F.W., The bushmeat boom and bust in west and central africa, Oryx, 36, 3, 236-242, (2002)
[9] Bauer, J. W.; Logan, K. A.; Sweanor, L. L.; Boyce, W. M., Scavenging behavior in puma, Southwest. Nat., 50, 4, 461-471, (2005)
[10] Ben-David, M.; Blundell, G. M.; Kern, J. W.; Maier, J. A.K.; Brown, E. D.; Jewett, S. C., Communication in river otterscreation of variable resource sheds for terrestrial communities, Ecology, 86, 5, 1331-1345, (2005)
[11] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 73, 5, 1530-1535, (1992)
[12] Bjønstad, O. N., Nonlinearity and chaos in ecological dynamics revisited, Proc. Natl. Acad. Sci., 112, 20, 6252-6253, (2015)
[13] Borgerson, S. G., Arctic meltdownthe economic and security implications of global warming, Foreign Aff., 87, 2, 63-77, (2008)
[14] Christian, J. J., Neurobehavioral endocrine regulation of small mammal populations, Popul. Small Mammals Under Nat. Condit., 10, 3, 143-158, (1978)
[15] Danish Meteorological Institute, 2015. Arctic temperatures, accessed: 2015-05-19.〈http://ocean.dmi.dk/arctic/meant80n.uk.php〉.
[16] Darimont, C. T.; Paquet, P. C.; Reimchen, T. E., Spawning salmon disrupt trophic coupling between wolves and ungulate prey in coastal british columbia, BMC Ecol., 8, 14, 1-12, (2008)
[17] de Valdez, M.R.W., Nimmo, D., Betza, J., Gong, H.-F., James, A.A., Alphey, L., IV, Black, W.C., 2011. Genetic elimination of dengue vector mosquitoes. Proc. Natl. Acad. Sci. 108 (12), 4772-4775.
[18] Dickman, C. R.; Greenville, A. C.; Beh, C.-L.; Tamayo, B.; Wardle, G. M., Social organization and movements of desert rodents during population booms and busts in central Australia, J. Mammal., 91, 4, 798-810, (2010)
[19] Drazin, P. G., Nonlinear systems, (1992), Cambridge University Press Cambridge, UK · Zbl 0753.34001
[20] Eckmann, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 3, 617-656, (1985) · Zbl 0989.37516
[21] Falck, W.; Bjørnstad, O. N.; Stenseth, N. C., Voles and lemmingschaos and uncertainty in fluctuating populations, Proc. R. Soc. Lond. B: Biol. Sci., 262, 1365, 363-370, (1995)
[22] Fuller, W. A.; Martell, A. M.; Smith, R. F.C.; Speller, S. W., High-arctic lemmings, dicrostonyx groenlandicus II. demography, Can. J. Zool., 53, 6, 867-878, (1975)
[23] George, A. J.T.; Stark, J.; Chan, C., Understanding specificity and sensitivity of T-cell recognition, Trends Immunol., 26, 12, 653-659, (2005)
[24] Gottwald, G. A.; Melbourne, I., A new test for chaos in deterministic systems, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 460, 2042, 603-611, (2003) · Zbl 1042.37060
[25] Hastings, A.; Powell, T., Chaos in a three-species food chain, Ecology, 72, 3, 896-903, (1991)
[26] Holling, C. S., The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Can. Entomol., 91, 5, 293-320, (1959)
[27] Holling, C. S., The functional response of invertebrate predators to prey density, Mem. Entomol. Soc. Can., 98, S48, 5-86, (1966)
[28] Holmes, E. E.; Lewis, M. A.; Banks, J. E.; Veit, R. R., Partial differential equations in ecologyspatial interactions and population dynamics, Ecology, 75, 1, 17-29, (1994)
[29] Hutson, V.; Vickers, G. T., A criterion for permanent coexistence of species, with an application to a two-prey one-predator system, Math. Biosci., 63, 2, 253-269, (1982) · Zbl 0524.92023
[30] Kareiva, P.; Mullen, A.; Southwood, R., Population dynamics in spatially complex environmentstheory and data [and discussion], Philos. Trans. R. Soc. B: Biol. Sci., 330, 1257, 175-190, (1990)
[31] Kingsford, R. T.; Curtin, A. L.; Porter, J., Water flows on Cooper creek in arid Australia determine boom and bust periods for waterbirds, Biol. Conserv., 88, 2, 231-248, (1999)
[32] Klebanoff, A.; Hastings, A., Chaos in one-predator, two-prey modelsgeneral results from bifurcation theory, Math. Biosci., 122, 2, 221-233, (1994) · Zbl 0802.92017
[33] Krebs, C. J.; Gaines, M. S.; Keller, B. L.; Meyer, J. H.; Tamarin, R. H., Population cycles in small rodents, Science, 179, 4068, 35-41, (1973)
[34] Lee, R., The formal dynamics of controlled populations and the echo, the boom and the bust, Demography, 11, 4, 563-585, (1974)
[35] Levin, S. A., Population dynamic models in heterogeneous environments, Annu. Rev. Ecol. Syst., 7, 287-310, (1976)
[36] Lima, S. L., Putting predators back into behavioral predator-prey interactions, Trends Ecol. Evol., 17, 2, 70-75, (2002)
[37] Lindström, J.; Ranta, E.; Kokko, H.; Lundberg, P.; Kaitala, V., From arctic lemmings to adaptive dynamics: charles elton׳s legacy in population ecology, Biol. Rev. Camb. Philos. Soc., 76, 1, 129-158, (2001)
[38] Lorenz, E. M., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 2, 130-141, (1963) · Zbl 1417.37129
[39] Lotka, A. J., Elements of physical biology, (1925), Williams & Wilkins Baltimore Maryland, USA · JFM 51.0416.06
[40] Malthus, T. R.; Appleman, P., An essay on the principle of population, (1976), Norton New York
[41] MATLAB, 2014. Version 8.4 (R2014b). The MathWorks Inc., Natick, Massachusetts.
[42] Meyer, J.; Anderson, B.; Carter, D. O., Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (dfa) climate, J. Forensic Sci., 58, 5, 1175-1182, (2013)
[43] Nevai, A. L.; Van Gorder, R. A., Effect of resource subsidies on predator-prey population dynamicsa mathematical model, J. Biol. Dyn., 6, 2, 891-922, (2012)
[44] Oksanen, L.; Oksanen, T., Long-term microtine dynamics in north Fennoscandian tundrathe vole cycle and the lemming chaos, Ecography, 15, 2, 226-236, (1992)
[45] Plumptre, A.J., Fuller, R.A., Rwetsiba A., Kujirakwinja, F.W., Driciru, D., Nangendo, M., Watson, G., Possingham, J.E.M., Possingham, H.P., 2014. Efficiently targeting resources to deter illegal activities in protected areas. J. Appl. Ecol. 51 (3), 714-725.
[46] Prestrud, P., Adaptions by the arctic fox (alopex logopus) to the polar winter, Arctic, 44, 2, 132-138, (1991)
[47] Rinaldi, S.; Muratori, S.; Kuznetsov, Y., Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bull. Math. Biol., 55, 1, 15-35, (1993) · Zbl 0756.92026
[48] Root, T. L.; Price, J. T.; Hall, K. R.; Schneider, S. H.; Rosenzweig, C.; Pounds, J. A., Fingerprints of global warming on wild animals and plants, Nature, 421, 6918, 57-60, (2003)
[49] Roth, J. D., Temporal variability in arctic fox diet as reflected in stable-carbon isotopes; the importance of sea ice, Oecologia, 133, 1, 70-77, (2002)
[50] Roth, J. D., Variability in marine resources affects arctic fox population dynamics, J. Anim. Ecol., 72, 4, 668-676, (2003)
[51] Seldal, T.; Andersen, K.-J.; Högstedt, G., Grazing-induced proteinase inhibitorsa possible cause for lemming population cycles, Oikos, 70, 1, 3-11, (1994)
[52] Sih, A., Prey refuges and predator-prey stability, Theor. Popul. Biol., 31, 1, 1-12, (1984)
[53] Silk, D.; Kirk, P. D.W.; Barnes, C. P.; Toni, T.; Rose, A.; Moon, S.; Dallman, M. J.; Stumpf, M. P.H., Designing attractive models via automated identification of chaotic and oscillatory dynamical regimes, Nat. Commun., 2, 489, 1-6, (2011)
[54] Solomon, M. E., The natural control of animal population, J. Anim. Ecol., 18, 1, 1-35, (1949)
[55] Steve, W.K., 1998. Lyapunov exponents toolbox. mATLAB Central File Exchange, Retrieved 30-06-2015.〈http://uk.mathworks.com/matlabcentral/fileexchange/233-let〉.
[56] Stott, I.; Franco, M.; Carslake, D.; Townley, S.; Hodgson, D., Boom or bust? A comparative analysis of transient population dynamics in plants, J. Ecol., 98, 2, 302-311, (2010)
[57] Talent, J. A., Earth and life, (2012), Springer Dordrecht
[58] Thiemann, G. W.; Iverson, S. J.; Stirling, I., Polar bear diets and arctic marine food websinsights from fatty acid analysis, Ecol. Monogr., 78, 4, 591-613, (2008)
[59] Turchin, P., Chaos and stability in rodent population dynamicsevidence from non-linear time-series analysis, Oikos, 68, 1, 167-172, (1993)
[60] Turchin, P.; Hanski, I., An empirically based model for latitudinal gradient in vole population dynamics, Am. Nat., 149, 5, 842-874, (1997)
[61] Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H., Are lemmings prey or predators?, Nature, 405, 6786, 562-565, (2000)
[62] Vance, R. R., Predation and resource partitioning in one predator-two prey model communities, Am. Nat., 112, 987, 797-813, (1978)
[63] Verhulst, P. F., Notice sur la loi que la population suite dans son accroissement. correspondence mathematique et physique publiée par, A. Quetelet, 10, 113-121, (1838)
[64] Volterra, V., 1931. Variation and fluctuations of the number of individuals in animal species living together. Animal Ecology, New York, New York, USA (translated from 1928 edition by R. N. Chapman).
[65] Wolf, A.; Swift, J. B.; Swiney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenom., 16, 3, 285-317, (1985) · Zbl 0585.58037
[66] Wrigley, R. E.; Hatch, D. R.M., Arctic fox migrations in manitoba, Arctic, 29, 3, 147-158, (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.