# zbMATH — the first resource for mathematics

Symmetric solutions of the coupled generalized Sylvester matrix equations via BCR algorithm. (English) Zbl 1344.93044
Summary: The symmetric solutions of linear matrix equations are extensively required in mathematics and engineering problems. The purpose of this paper is on deriving the biconjugate residual (BCR) algorithm for finding the least Frobenius norm symmetric solution pair $$(X,Y)$$ of the coupled generalized Sylvester matrix equations $\begin{cases} A_1XB_1+C_1XD_1+E_1YF_1=G_1, \\ A_2XB_2+C_2XD_2+E_2YF_2=G_2.\end{cases}$ The convergence analysis shows that the BCR algorithm can compute the least Frobenius norm symmetric solution pair of the coupled generalized Sylvester matrix equations within a finite number of iterations in the absence of round-off errors. Finally, we give three numerical examples to illustrate the performance of the BCR algorithm.

##### MSC:
 93B40 Computational methods in systems theory (MSC2010) 15A24 Matrix equations and identities
CGS
Full Text:
##### References:
 [1] Ding, F.; Chen, T., Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. Autom. Control, 50, 1216-1221, (2005) · Zbl 1365.65083 [2] Ding, F.; Chen, T., Iterative least squares solutions of coupled Sylvester matrix equations, Syst. Control Lett., 54, 95-107, (2005) · Zbl 1129.65306 [3] Ding, F.; Chen, T., Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica, 41, 315-325, (2005) · Zbl 1073.93012 [4] Ding, F.; Chen, T., On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 44, 2269-2284, (2006) · Zbl 1115.65035 [5] Zhou, B.; Li, Z. Y.; Duan, G. R.; Wang, Y., Weighted least squares solutions to general coupled Sylvester matrix equations, J. Comput. Appl. Math., 224, 759-776, (2009) · Zbl 1161.65034 [6] Zhou, B.; Duan, G. R.; Li, Z. Y., Gradient based iterative algorithm for solving coupled matrix equations, Syst. Control Lett., 58, 327-333, (2009) · Zbl 1159.93323 [7] Soares, G., Some further notes on the matrix equations $$A^T \mathit{XB} + B^T X^T A = C$$ and $$A^T \mathit{XB} + B^T \mathit{XA} = C$$, Acta Math. Sci., 35, 275-280, (2015) [8] Fanliang, L.; Xiyan, H.; Lei, Z., The generalized reflexive solution for a class of matrix equations $$(\mathit{AX} = B, \mathit{XC} = D)$$, Acta Math. Sci., 28, 185-193, (2008) · Zbl 1150.15006 [9] Wang, Q. W.; Woude, J. W.; Chang, H. X., A system of real quaternion matrix equations with applications, Linear Algebra Appl., 431, 2291-2303, (2009) · Zbl 1180.15019 [10] Wang, Q. W.; Li, C. K., Ranks and the least-norm of the general solution to a system of quaternion matrix equations, Linear Algebra Appl., 430, 1626-1640, (2009) · Zbl 1158.15010 [11] Datta, L.; Morgera, S., On the reducibility of centrosymmetric matrices - applications in engineering problems, Circuits Syst. Signal Process., 8, 71-96, (1989) · Zbl 0674.15005 [12] Chen, W.; Wang, X.; Zhong, T., The structure of weighting coefficient matrices of harmonic differential quadrature and its application, Commun. Numer. Methods Eng., 12, 455-460, (1996) · Zbl 0860.65012 [13] B.N. Datta, Numerical methods for linear control systems, Design and Analysis, Elsevier Academic Press, San Diego, CA, 2004. · Zbl 1079.65072 [14] S. Barnett, C. Storey, Matrix Methods in Stability Theory, Nelson, London, 1970. · Zbl 0243.93017 [15] S. Barnett, Matrices in Control Theory with Applications to Linear Programming, Van Nostrand Reinhold, New York, 1971. · Zbl 0245.93002 [16] Liao, A.-P.; Bai, Z.-Z.; Lei, Y., Best approximate solution of matrix equation $$\mathit{AXB} + \mathit{CYD} = E$$, SIAM J. Matrix Anal. Appl., 27, 675-688, (2005) [17] Tian, Y. G.; Takane, Y., On consistency, natural restrictions and estimability under classical and extended growth curve models, J. Stat. Plann. Inference, 139, 2445-2458, (2009) · Zbl 1160.62051 [18] Bai, Z.-Z., On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations, J. Comput. Math., 29, 185-198, (2011) · Zbl 1249.65090 [19] Tang, Y.; Peng, J.; Yue, S., Cyclic and simultaneous iterative methods to matrix equations of the form $$A_i \mathit{XB}_i = F$$, Numer. Algor., 66, 379-397, (2014) [20] Zak, M. K.; Toutounian, F., Nested splitting conjugate gradient method for matrix equation $$\mathit{AXB} = C$$ and preconditioning, Comput. Math. Appl., 66, 269-278, (2013) · Zbl 1347.65078 [21] Dai, L., Singular control system, Lecture Notes in Control and Information Science, vol. 118, (1989), Springer Berlin [22] Duan, G. R., Eigenstructure assignment in descriptor linear systems via output feedback, Int. J. Control, 72, 4, 345-364, (1999) · Zbl 0952.93054 [23] Lewis, F. L., Survey of linear singular systems, Circuit Syst. Signal Process., 5, 1, 3-36, (1986) · Zbl 0613.93029 [24] Inman, D. J.; Kress, A., Eigenstructure assignment algorithm for second order systems, J. Guid. Control Dyn., 22, 5, 729-731, (1999) [25] Zhou, B.; Duan, G. R., On the generalized Sylvester mapping and matrix equations, Syst. Control Lett., 57, 200-208, (2008) · Zbl 1129.93018 [26] Duan, G. R., Parametric eigenstructure assignment in high-order linear systems, Int. J. Control Autom. Syst., 3, 3, 419-429, (2005) [27] Hu, T.; Lin, Z.; Lam, J., Unified gradient approach to performance optimization under a pole assignment constrain, J. Optim. Theory Appl., 121, 2, 361-383, (2004) · Zbl 1056.93036 [28] Bhattacharyya, S. P.; de Souza, E., Pole assignment via sylvester׳s equation, Syst. Control Lett., 1, 4, 261-263, (1981) · Zbl 0473.93037 [29] B. Zhou, G.R. Duan, Parametric approach for the normal Luenberger function observer design in second-order linear systems, in: Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 1423-1428. [30] Penzl, T., A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21, 4, 1401-1418, (2000) · Zbl 0958.65052 [31] Dehghan, M.; Hajarian, M., On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations, Linear Multilinear Algebra, 59, 1281-1309, (2011) · Zbl 1242.65075 [32] Dehghan, M.; Hajarian, M., The general coupled matrix equations over generalized bisymmetric matrices, Linear Algebra Appl., 432, 1531-1552, (2010) · Zbl 1187.65042 [33] Hajarian, M., Developing the CGLS algorithm for the least squares solutions of the general coupled matrix equations, Math. Methods Appl. Sci., 37, 2782-2798, (2014) · Zbl 1323.65041 [34] Peng, Z., The reflexive least squares solutions of the matrix equation $$A_1 X_1 B_1 + A_2 X_2 B_2 + \ldots + A_l X_l B_l = C$$ with a submatrix constraint, Numer. Algorithms, 64, 455-480, (2013) [35] Hajarian, M., Matrix form of the CGS method for solving general coupled matrix equations, Appl. Math. Lett., 34, 37-42, (2014) · Zbl 1314.65064 [36] Hajarian, M., Developing bi-CG and bi-CR methods to solve generalized Sylvester-transpose matrix equations, Int. J. Autom. Comput., 11, 25-29, (2014) [37] O׳Leary, D. P., The block conjugate gradient algorithm and related methods, Linear Algebra Appl., 29, 293-322, (1980) · Zbl 0426.65011 [38] Vespucci, M. T.; Broyden, C. G., Implementation of different computational variations of biconjugate residual methods, Comput. Math. Appl., 42, 1239-1253, (2001) · Zbl 0983.65037 [39] Bao, L.; Lin, Y.; Wei, Y., A new projection method for solving large Sylvester equations, Appl. Numer. Math., 57, 521-532, (2007) · Zbl 1118.65028 [40] Calvetti, D.; Reichel, L., Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl., 17, 165-186, (1996) · Zbl 0849.65101 [41] Epton, M. A., Methods for the solution of $$\mathit{ADXD} - \mathit{BXC} = E$$ and its application in the numerical solution of implicit ordinary differential equations, BIT, 20, 341-345, (1980) · Zbl 0452.65015 [42] Chan, T. F.; Gallopoulos, E.; Simoncini, V.; Szeto, T.; Tong, C. H., A quasi-minimal residual variant of the bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comput., 15, 338-347, (1994) · Zbl 0803.65038 [43] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 10 (1989) 36-52. · Zbl 0666.65029 [44] T.L. Doug, Conjugate gradient-type product methods for solving nonsymmetric linear systems (Ph.D. thesis), University of California, Los Angeles (UCLA), 1994. [45] Freund, R. W., A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput., 14, 470-482, (1993) · Zbl 0781.65022 [46] Van der Vorst, H. A., Bi-cgstaba fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 631-644, (1992) · Zbl 0761.65023 [47] Simoncini, V., A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput., 29, 1268-1288, (2007) · Zbl 1146.65038 [48] Peng, Z.; Xin, H., The reflexive least squares solutions of the general coupled matrix equations with a submatrix constraint, Appl. Math. Comput., 225, 425-445, (2013) · Zbl 1336.65074 [49] Dehghan, M.; Hajarian, M., Efficient iterative method for solving the second-order Sylvester matrix equation $$\mathit{EVF}^2 - \mathit{AVF} - \mathit{CV} = \mathit{BW}$$, IET Control Theory Appl., 3, 1401-1408, (2009) [50] Hajarian, M.; Dehghan, M., The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation $$\mathit{AYB} + \mathit{CY}^T D = E$$, Math. Methods Appl. Sci., 34, 1562-1579, (2011) · Zbl 1228.65066 [51] Dehghan, M.; Hajarian, M., An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices, Appl. Math. Model., 34, 639-654, (2010) · Zbl 1185.65054 [52] Hajarian, M., Developing bicor and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations, Appl. Math. Model., 39, 6073-6084, (2015) [53] Hajarian, M., Matrix gpbicg algorithms for solving the general coupled matrix equations, IET Control Theory Appl., 9, 74-81, (2015) [54] Hajarian, M., Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations, J. Frankl. Inst., 350, 3328-3341, (2013) · Zbl 1293.93289 [55] Hajarian, M., The generalized QMRCGSTAB algorithm for solving Sylvester-transpose matrix equations, Appl. Math. Lett., 26, 1013-1017, (2013) · Zbl 1308.65062 [56] M. Hajarian, Least squares solution of the linear operator equation, J. Optim. Theory Appl., 10.1007/s10957-015-0737-5. · Zbl 1350.65032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.