×

Program in C for studying characteristic properties of two-body interactions in the framework of spectral distribution theory. (English) Zbl 1344.81021

Summary: We present a program in C that employs spectral distribution theory for studies of characteristic properties of a many-particle quantum-mechanical system and the underlying few-body interaction. In particular, the program focuses on two-body nuclear interactions given in a \(JT\)-coupled harmonic oscillator basis and calculates correlation coefficients, a measure of similarity of any two interactions, as well as Hilbert-Schmidt norms specifying interaction strengths. An important feature of the program is its ability to identify the monopole part (centroid) of a 2-body interaction, as well as its ‘density-dependent’ one-body and two-body part, thereby providing key information on the evolution of shell gaps and binding energies for larger nuclear systems. As additional features, we provide statistical measures for ‘density-dependent’ interactions, as well as a mechanism to express an interaction in terms of two other interactions. This, in turn, allows one to identify, e.g., established features of the nuclear interaction (such as pairing correlations) within a general Hamiltonian. The program handles the radial degeneracy for ‘density-dependent’ one-body interactions and together with an efficient linked list data structure, facilitates studies of nuclear interactions in large model spaces that go beyond valence-shell applications.

MSC:

81-04 Software, source code, etc. for problems pertaining to quantum theory
81V80 Quantum optics
81V45 Atomic physics

Software:

sdt
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] French, J. B.; French, J. B., Phys. Lett., Phys. Lett. B, 26, 75, (1967)
[2] French, J. B.; Ratcliff, K. F., Phys. Rev. C, 3, 94, (1971)
[3] Chang, F. S.; French, J. B.; Thio, T. H., Ann. Phys., NY, 66, 137, (1971)
[4] Hecht, K. T.; Draayer, J. P., Nucl. Phys. A, 223, 285, (1974)
[5] Kota, V. K.B.; Haq, R. U., Spectral distributions in nuclei and statistical spectroscopy, (2010), World Scientific Publishing Co.
[6] French, J. B., (Rowe, D. J.; etal., Dynamic Structure of Nuclear States, (1972), Univ. of Toronto Press Toronto), 154
[7] Draayer, J. P., Nucl. Phys. A, 216, 457, (1973)
[8] Parikh, J. C., Group symmetries in nuclear structure, (1978), Plenum New York
[9] Kota, V. K.B., Phys. Rev. C, 20, 347, (1979), Fortran Programs for Statistical Spectroscopy Calculations
[10] Countee, C. R.; Draayer, J. P.; Halemane, T. R.; Kar, K., Nucl. Phys. A, 356, 1, (1981)
[11] Potbhare, V., Nucl. Phys. A, 289, 373, (1977)
[12] French, J. B., Nucl. Phys. A, 396, 87c, (1983)
[13] Draayer, J. P.; Rosensteel, G.; Draayer, J. P.; Rosensteel, G.; Rosensteel, G.; Draayer, J. P., Phys. Lett. B, Phys. Lett. B, Nucl. Phys. A, 436, 445, (1985)
[14] Sarkar, S.; Kar, K.; Kota, V. K.B., Phys. Rev. C, 36, 2700, (1987)
[15] French, J. B.; Kota, V. K.B.; Pandey, A.; Tomsovic, S., Ann. Phys., NY, 181, 235, (1988)
[16] Kota, V. K.B.; Majumdar, D., Z. Phys. A, Z. Phys. A, 351, 377, (1995)
[17] Ratcliff, K. F., Phys. Rev. C, 3, 117, (1971)
[18] Ginnochio, J. N., Phys. Rev. Lett., 31, 1260, (1973)
[19] Draayer, J. P.; French, J. B.; Prasad, M.; Potbhare, V.; Wong, S. S.M., Phys. Lett. B, 57, 130, (1975)
[20] French, J. B.; Kota, V. K.B., Phys. Rev. Lett., 51, 2183, (1983)
[21] Strohmaier, B.; Grimes, S. M.; Satyanarayana, H., Phys. Rev. C, 36, 1604, (1987)
[22] Abzouzi, A.; Caurier, E.; Zuker, A. P., Phys. Rev. Lett., 66, 1134, (1991)
[23] Halemane, T. R.; Kar, K.; Draayer, J. P., Nucl. Phys. A, 311, 1134, (1978)
[24] Dalton, B. J.; Baldridge, W. J.; Vary, J. P., Phys. Rev. C, 20, 1908, (1979)
[25] Benet, L.; Rupp, T.; Weidenmiiller, H. A., Phys. Rev. Lett., 87, 010601, (2001)
[26] Tomsovic, S.; Johnson, M. B.; Hayes, A.; Bowman, J. D., Phys. Rev. C, 62, 054607, (2000)
[27] Gomez, J. M.G.; Kar, K.; Kota, V. K.B.; Molina, R. A.; Retamosa, J., Phys. Lett. B, 567, 251, (2003)
[28] Horoi, M.; Ghita, M.; Zelevinsky, V.; Horoi, M.; Kaiser, J.; Zelevinsky, V., Phys. Rev. C, Phys. Rev. C, 67, 054309, (2003)
[29] Kota, V. K.B., Phys. Rev. C, 71, 041304(R), (2005)
[30] Zhao, Y. M.; Arima, A.; Yoshida, N.; Ogawa, K.; Yoshinaga, N.; Kota, V. K.B., Phys. Rev. C, 72, 064314, (2005)
[31] Teran, E.; Johnson, C. W., Phys. Rev. C, 74, 067302, (2006)
[32] Sviratcheva, K. D.; Draayer, J. P.; Vary, J. P., Nucl. Phys. A, 786, 31, (2007)
[33] Sviratcheva, K. D.; Draayer, J. P.; Vary, J. P., Phys. Rev. C, 73, 034324, (2006)
[34] Lisetskiy, A. F.; Barrett, B. R.; Kruse, M. K.G.; Navratil, P.; Stetcu, I.; Vary, J. P., Phys. Rev. C, 78, 044302, (2008)
[35] Hagen, G., Phys. Rev. C, 76, 034302, (2007)
[36] Tsukiyama, K.; Bogner, S. K.; Schwenk, A., Phys. Rev. Lett., 106, 222502, (2011)
[37] Honma, M.; Otsuka, T.; Brown, B. A.; Mizusaki, T., Phys. Rev. C, 69, 034335, (2004)
[38] Otsuka, T., Phys. Rev. Lett., 87, 082502, (2001)
[39] Launey, K. D.; Dytrych, T.; Draayer, J. P., Phys. Rev. C, 85, 044003, (2012)
[40] Entem, D. R.; Machleidt, R., Phys. Rev. C, 68, 041001, (2003)
[41] Wiringa, R. B.; Stoks, V. G.J.; Schiavilla, R., Phys. Rev. C, 51, 38, (1995)
[42] Machleidt, R., Phys. Rev. C, 63, 024001, (2001)
[43] Chang, B. D.; Draayer, J. P.; Wong, S. S.M., Comput. Phys. Comm., 28, 41, (1982)
[44] Grimes, S. M.; Bloom, S. D.; Vonach, H. K.; Hausman, R. F., Phys. Rev. C, 27, 2893, (1983)
[45] Caprio, M. A.; Luo, F. Q.; Cai, K.; Hellemans, V.; Constantinou, C., Phys. Rev. C, 85, 034324, (2012)
[46] Cohen, J.; Cohen, J.; Cohen, P.; West, S. G.; Aiken, L. S., Applied multiple regression/correlation analysis for the behavioral sciences, (2003), Lawrence Erlbaum Associates Hillsdale, NJ
[47] Kota, V. K.B.; Pandya, S. P.; Potbhare, V., Nucl. Phys. A, 349, 397, (1980)
[48] French, J. B., (Wilkinson, D. H., Isospin in Nuclear Physics, (1969), North Holland Amsterdam), 259
[49] Draayer, J. P.; Rosensteel, G., Nucl. Phys. A, 386, 189, (1982)
[50] Shirokov, A. M., Phys. Letts. B, 644, 33, (2007)
[51] Sviratcheva, K. D.; Georgieva, A. I.; Draayer, J. P., Phys. Rev. C, 70, 064302, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.