zbMATH — the first resource for mathematics

GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations. II: Dynamics and stochastic simulations. (English) Zbl 1344.82004
Summary: GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows [the authors, “GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions”, ibid. 185, No. 11, 2969–2991 (2014; doi:10.1016/j.cpc.2014.06.026)], is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations [the first author et al., ibid. 184, No. 12, 2621–2633 (2013; Zbl 1344.35130)]. Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.

82-04 Software, source code, etc. for problems pertaining to statistical mechanics
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
82-08 Computational methods (statistical mechanics) (MSC2010)
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
GPELab; Matlab
Full Text: DOI
[1] Antoine, X.; Duboscq, R., Gpelab, a Matlab toolbox to solve Gross-Pitaevskii equations I: computation of stationary solutions, Comput. Phys. Comm., 185, 11, 2969-2991, (2014) · Zbl 1348.35003
[2] Gross, E. P., Structure of a quantized vortex in boson systems, Il Nuovo Cimento Series 10, 20, 3, 454-477, (1961) · Zbl 0100.42403
[3] M. Lewin, P.T. Nam, N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose systems. arXivpreprintarXiv:1303.0981, 2013. · Zbl 1316.81095
[4] Lieb, E. H.; Seiringer, R., Derivation of the Gross-Pitaevskii equation for rotating Bose gases, Comm. Math. Phys., 264, 2, 505-537, (2006) · Zbl 1233.82004
[5] Pethick, C. J.; Smith, H., Bose-Einstein condensation in dilute gases, (2002), Cambridge University Press
[6] Pitaevskii, L. P., Vortex lines in an imperfect Bose gas, Sov. Phys. JETP-USSR, 13, 2, (1961)
[7] Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornell, E. A., Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269, 5221, 198-201, (1995)
[8] Bao, W.; Cai, Y., Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6, 1, 1-135, (2013) · Zbl 1266.82009
[9] Davis, K. B.; Mewes, M.-O.; van Andrews, M. R.; Van Druten, N. J.; Durfee, D. S.; Kurn, D. M.; Ketterle, W., Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75, 22, 3969-3973, (1995)
[10] Fried, D. G.; Killian, T. C.; Willmann, L.; Landhuis, D.; Moss, S. C.; Kleppner, D.; Greytak, T. J., Bose-Einstein condensation of atomic hydrogen, Phys. Rev. Lett., 81, 3811-3814, (1998)
[11] Jackson, B.; McCann, J. F.; Adams, C. S., Vortex formation in dilute inhomogeneous Bose-Einstein condensates, Phys. Rev. Lett., 80, 3903-3906, (1998)
[12] Kasamatsu, K.; Tsubota, M.; Ueda, M., Giant hole and circular superflow in a fast rotating Bose-Einstein condensate, Phys. Rev. A, 66, 053606, (2002)
[13] Kuga, T.; Torii, Y.; Shiokawa, N.; Hirano, T.; Shimizu, Y.; Sasada, H., Novel optical trap of atoms with a doughnut beam, Phys. Rev. Lett., 78, 4713-4716, (1997)
[14] Wen, L.; Xiong, H.; Wu, B., Hidden vortices in a Bose-Einstein condensate in a rotating double-well potential, Phys. Rev. A, 82, 5, 053627, (2010)
[15] Bao, W.; Cai, Y.; Wang, H., Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229, 7874-7892, (2010) · Zbl 1198.82036
[16] Giovanazzi, S.; Görlitz, A.; Pfau, T., Tuning the dipolar interaction in quantum gases, Phys. Rev. Lett., 89, 130401, (2002)
[17] Góral, K.; Rza̧żewski, K.; Pfau, T., Bose-Einstein condensation with magnetic dipole-dipole forces, Phys. Rev. A, 61, 051601, (2000)
[18] Griesmaier, A.; Werner, J.; Hensler, S.; Stuhler, J.; Pfau, T., Bose-Einstein condensation of chromium, Phys. Rev. Lett., 94, 160401, (2005)
[19] Lahaye, T.; Menotti, C.; Santos, L.; Lewenstein, M.; Pfau, T., The physics of dipolar bosonic quantum gases, Rep. Progr. Phys., 72, 12, 126401, (2009)
[20] Pedri, P.; Santos, L., Two-dimensional bright solitons in dipolar Bose-Einstein condensates, Phys. Rev. Lett., 95, 200404, (2005)
[21] Abo-Shaeer, J. R.; Raman, C.; Vogels, J. M.; Ketterle, W., Observation of vortex lattices in Bose-Einstein condensates, Science, 292, 5516, 476-479, (2001)
[22] Bao, W.; Marahrens, Q.; Tang, Q.; Zhang, Y., A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via a rotating Lagrangian coordinate, SIAM J. Sci. Comput., 35, A2671-A2695, (2013) · Zbl 1286.35213
[23] Madison, K. W.; Chevy, F.; Bretin, V.; Dalibard, J., Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation, Phys. Rev. Lett., 86, 20, 4443-4446, (2001)
[24] Madison, K. W.; Chevy, F.; Wohlleben, W.; Dalibard, J., Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 84, 5, 806-809, (2000)
[25] Madison, K. W.; Chevy, F.; Wohlleben, W.; Dalibard, J., Vortices in a stirred Bose-Einstein condensate, J. Modern Opt., 47, 14-15, 2715-2723, (2000)
[26] Raman, C.; Abo-Shaeer, J. R.; Vogels, J. M.; Xu, K.; Ketterle, W., Vortex nucleation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 87, 21, 210402, (2001)
[27] Abdullaev, F. Kh.; Baizakov, B. B.; Konotop, V. V., Dynamics of a Bose-Einstein condensate in optical trap, (Nonlinearity and Disorder: Theory and Applications, NATO Science Series, vol. 45, (2001), Springer Netherlands), 69-78 · Zbl 1032.82032
[28] Abdullaev, F. Kh.; Bronski, J. C.; Galimzyanov, R. M., Dynamics of a trapped 2d Bose-Einstein condensate with periodically and randomly varying atomic scattering length, Physica D, 184, 1-4, 319-332, (2003) · Zbl 1030.82006
[29] Abdullaev, F. Kh.; Bronski, J. C; Papanicolaou, G., Soliton perturbations and the random Kepler problem, Physica D, 135, 3-4, 369-386, (2000) · Zbl 0936.35171
[30] Garnier, J.; Abdullaev, F. Kh.; Baizakov, B. B., Collapse of a Bose-Einstein condensate induced by fluctuations of the laser intensity, Phys. Rev. A, 69, 053607, (2004)
[31] Gehm, M. E.; O’Hara, K. M.; Savard, T. A.; Thomas, J. E., Dynamics of noise-induced heating in atom traps, Phys. Rev. A, 58, 3914-3921, (1998)
[32] Savard, T. A.; O’Hara, K. M.; Thomas, J. E., Laser-noise-induced heating in far-off resonance optical traps, Phys. Rev. A, 56, R1095-R1098, (1997)
[33] Aftalion, A.; Mason, P., Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation, Phys. Rev. A, 88, 023610, (2013)
[34] Bao, W., Ground states and dynamics of multicomponent Bose-Einstein condensates, Multiscale Model. Simul., 2, 2, 210-236, (2004) · Zbl 1062.82034
[35] Kawaguchi, Y.; Ueda, M., Spinor Bose-Einstein condensates, Phys. Rep., (2012)
[36] Law, C. K.; Pu, H.; Bigelow, N. P., Quantum spins mixing in spinor Bose-Einstein condensates, Phys. Rev. Lett., 81, 5257-5261, (1998)
[37] Miesner, H.-J.; Stamper-Kurn, D. M.; Stenger, J.; Inouye, S.; Chikkatur, A. P.; Ketterle, W., Observation of metastable states in spinor Bose-Einstein condensates, Phys. Rev. Lett., 82, 2228-2231, (1999)
[38] Myatt, C. J.; Burt, E. A.; Ghrist, R. W.; Cornell, E. A.; Wieman, C. E., Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett., 78, 586-589, (1997)
[39] Sadler, L. E.; Higbie, J. M.; Leslie, S. R.; Vengalattore, M.; Stamper-Kurn, D. M., Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate, Nature, 443, 7109, 312-315, (2006)
[40] Xu, X.-Q.; Han, J. H., Spin-orbit coupled Bose-Einstein condensate under rotation, Phys. Rev. Lett., 107, 200401, (2011)
[41] Zhang, Y.; Bao, W.; Li, J., Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation, Physica D, 234, 49-69, (2007) · Zbl 1130.82023
[42] Antoine, X.; Duboscq, R., Modeling and computation of Bose-Einstein condensates: stationary states, nucleation, dynamics, stochasticity, (Nonlinear Optical and Atomic Systems: at the Interface of Mathematics and Physics, CEMPI Subseries, Lecture Notes in Mathematics, vol. 1, (2015), Springer), in press · Zbl 1344.35114
[43] Bao, W.; Chern, I.-L.; Lim, F. Y., Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates, J. Comput. Phys., 219, 2, 836-854, (2006) · Zbl 1330.82031
[44] Zeng, R.; Zhang, Y., Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates, Comput. Phys. Comm., 180, 6, 854-860, (2009) · Zbl 1198.82007
[45] Bao, W.; Du, Q.; Zhang, Y., Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math., 66, 3, 758-786, (2006) · Zbl 1141.35052
[46] Bao, W.; Shen, J., A fourth-order time-splitting Laguerre-Hermite pseudo-spectral method for Bose-Einstein condensates, SIAM J. Sci. Comput., 26, 2010-2028, (2005) · Zbl 1084.35083
[47] Thalhammer, M., Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal., 50, 6, 3231-3258, (2012) · Zbl 1267.65116
[48] Bao, W.; Jaksch, D.; Markowich, P. A., Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys., 187, 1, 318-342, (2003) · Zbl 1028.82501
[49] Bao, W.; Wang, H., An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates, J. Comput. Phys., 217, 2, 612-626, (2006) · Zbl 1160.82343
[50] Antoine, X.; Bao, W.; Besse, C., Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Comm., 184, 12, 2621-2633, (2013) · Zbl 1344.35130
[51] Besse, C., A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 42, 3, 934-952, (2004) · Zbl 1077.65103
[52] Antoine, X.; Duboscq, R., Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates, J. Comput. Phys., 258C, 509-523, (2014) · Zbl 1349.82027
[53] Duboscq, R., Analyse et simulation d’équations de Schrödinger déterministes et stochastiques. applications aux condensats de Bose-Einstein en rotation, (2013), Université de Lorraine, (Ph.D. thesis)
[54] Sonnier, W. J.; Christov, C. I., Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation, Discrete Contin. Dyn. Syst., 708-718, (2009) · Zbl 1187.65094
[55] Simula, T. P.; Engels, P.; Coddington, I.; Schweikhard, V.; Cornell, E. A.; Ballagh, R. J., Observations on sound propagation in rapidly rotating Bose-Einstein condensates, Phys. Rev. Lett., 94, 8, 080404, (2005)
[56] Hsueh, C.-H.; Lin, T.-C.; Horng, T.-L.; Wu, W. C., Quantum crystals in a trapped Rydberg-dressed Bose-Einstein condensate, Phys. Rev. A, 86, 013619, (2012)
[57] Kobayashi, M.; Tsubota, M., Kolmogorov spectrum of superfluid turbulence: numerical analysis of the Gross-Pitaevskii equation with a small-scale dissipation, Phys. Rev. Lett., 94, 6, 065302, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.