×

zbMATH — the first resource for mathematics

Efficient adaptation of design parameters of derivative-free filters. (English. Russian original) Zbl 1346.93366
Autom. Remote Control 77, No. 2, 261-276 (2016); translation from Avtom. Telemekh. 2016, No. 2, 94-114 (2016).
Summary: The paper deals with state estimation of nonlinear discrete time stochastic dynamic systems with a focus on derivative-free filters. Design parameters of the filters are treated and an efficient way for their adaptation is proposed. The efficiency is based on observing a degree of nonlinearity of the nonlinear state and measurement functions at the working point by means of a non-Gaussianity measure. The adaptation is executed only if the nonlinearity is severe and the design parameter adaptation may bring a significant improvement of the estimate quality. Otherwise the adaptation is switched off to keep computational complexity of the filter low. The developed algorithm is illustrated using a numerical example of bearings-only target tracking.
Reviewer: Reviewer (Berlin)

MSC:
93E10 Estimation and detection in stochastic control theory
93E11 Filtering in stochastic control theory
93C40 Adaptive control/observation systems
93C55 Discrete-time control/observation systems
Software:
RANRTH
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blasch, E.; Kahler, D., Multiresolution EO/IR target track and ID, (2005)
[2] Haykin, S. and Arasaratnam, I., Adaptive Signal Processing, Hoboken: Wiley, 2010.
[3] Isermann Rolf, Fault-Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance, Berlin: Springer, 2006.
[4] Stepanov, O.A., Primenenie teorii nelineinoi filtratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory for Processing Navigation Information), St. Petersburg: Elektropribor, 2003.
[5] Grachev, A.N.; Shuryigin, S.V., Metodika sinteza iteratsionnykh algoritmov sovmestnogo otsenivaniya parametrov i sostoyaniya lineinykh diskretnykh sistem (the technique of synthesis of iterative algorithms for joint estimation of the parameters and state of linear discrete systems), 204-219, (2008)
[6] Volynskii, M.A.; Gurov, I.P.; Zakharov, A.S., Dynamic analysis of the signals in optical coherent tomography by the method of nonlinear Kalman filtering, J. Opt. Technol., 75, 682-686, (2008)
[7] Koshaev, D.A., Kalman filter-based multialternative method for fault detection and estimation, Autom. Remote Control, 71, 790-802, (2010) · Zbl 1218.93100
[8] Stepanov, O.A.; Toropov, A.B., A comparison of linear and nonlinear optimal estimators in nonlinear navigation problems, Gyroscopy Navigation, 1, 183-190, (2010)
[9] Stepanov, O.A.; Toropov, A.B., Linear optimal algorithms in problems of estimation with nonlinear measurements. relation with the Kalman type algorithms, Izv. TulGU, Tekh. Vestn., 7, 172-189, (2012)
[10] Hmarskiy, P.A.; Solonar, A.S., Features of the UKF in the polar coordinates, Dokl. BGUIR, 2, 79-86, (2013)
[11] Stepanov, O.A.; Toropov, A.B., Application of the Monte Carlo methods with partial analytical integration techniques to the problem of navigation system aiding, 298-301, (2013)
[12] Berkovskii, N.A.; Stepanov, O.A., Error of calculating the optimal Bayesian estimate using the Monte Carlo method in nonlinear problems, J. Comput. Syst. Sci. Int., 52, 342-353, (2013) · Zbl 1278.93245
[13] Mikhailov, N.V.; Koshaev, D.A., Navigation in a geostationary orbit using GNSS receiver aided by the satellite dynamic model, Gyroscopy Navigation, 6, 87-100, (2015)
[14] Candy, J.V., Bayesian Signal Processing, Hoboken: Wiley, 2008.
[15] Sorenson, H.W.; Alspach, D.L., Recursive Bayesian estimation using Gaussian sums, Automatica, 7, 465-479, (1971) · Zbl 0219.93020
[16] Anderson, B.D.O. and Moore, J.B., Optimal Filtering, Englewood Cliffs: Prentice Hall, 1979. · Zbl 0688.93058
[17] Sarmavuori, J.; Sarkka, S., Fourier-Hermite Kalman filter, IEEE Trans. Automat. Control, 57, 1511-1515, (2012) · Zbl 1369.93650
[18] Norgaard, M.; Poulsen, N.K.; Ravn, O., New developments in state estimation for nonlinear systems, Automatica, 36, 1627-1638, (2000) · Zbl 0973.93050
[19] Julier, S.J.; Uhlmann, J.K., Unscented filtering and nonlinear estimation, IEEE Rev., 92, 401-421, (2004)
[20] Ito, K.; Xiong, K., Gaussian filters for nonlinear filtering problems, IEEE Trans. Automat. Control, 45, 910-927, (2000) · Zbl 0976.93079
[21] Arasaratnam, I.; Haykin, S., Cubature Kalman filters, IEEE trans, Automat. Control, 54, 1254-1269, (2009) · Zbl 1367.93637
[22] Duník, J.; Straka, O.; Šimandl, M., Stochastic integration filter, IEEE Trans. Automat. Control, 58, 1561-1566, (2013) · Zbl 1369.93619
[23] Sakai, A.; Kuroda, Y., Discriminatively trained unscented Kalman filter for mobile robot localization, J. Adv. Res. Mechan. Eng., 1, 153-161, (2010)
[24] Duník, J.; Šimandl, M.; Straka, O., Adaptive choice of scaling parameter in derivative-free local filters, 22416, (2010) · Zbl 1346.93366
[25] Turner, R.; Rasmussen, C.E., Model based learning of sigma points in unscented Kalman filter, Neurocomput., 80, 47-53, (2012)
[26] Duník, J.; Šimandl, M.; Straka, O., Unscented Kalman filter aspects and adaptive setting of scaling parameter, IEEE Trans. Automat. Control, 57, 2411-2416, (2012) · Zbl 1369.93618
[27] Chang, L.; Hu, B.; Qin, F., Unscented type Kalman filter limitation and combination, IET Signal Process., 7, 167-176, (2013)
[28] Duník, J.; Straka, O.; Šimandl, M., Sigma-point set rotation in unscented Kalman filter: analysis and adaptation, 5951-5956, (2014)
[29] Duník, J.; Straka, O.; Šimandl, M., On sigma-point set rotation in derivative-free filters, 1-8, (2014)
[30] Rhudy, M.; Gu, Y.; Gross, J.; etal., Evaluation of matrix square root operations for UKF within a UAV GPS/INS sensor fusion application, Int. J. Navigation Observation, 1, 1-11, (2012)
[31] Straka, O.; Duník, J.; Šimandl, M.; etal., Aspects and comparison of matrix decompositions in unscented Kalman filter, (2013)
[32] Straka, O.; Duník, J.; Šimandl, M., Unscented Kalman filter with controlled adaptation, Proc. 16 IFAC Sympos. on System Identification (SYSID), Brussels, 16, 906-911, (2012)
[33] Šimandl, M.; Duník, J., Derivative-free estimation methods new results and performance analysis, Automatica, 45, 1749-1757, (2009) · Zbl 1184.93109
[34] Zarei, J.; Shokri, E.; Karimi, H.R., Convergence analysis of cubature Kalman filter, 1367-1372, (2014) · Zbl 1329.03033
[35] Julier, S.J.; Uhlmann, J.K.; Durrant-Whyte, H.F., A new method for the nonlinear transformation of means and covariances in filters and estimators, IEEE Trans. Automat. Control, 45, 477-482, (2000) · Zbl 0973.93053
[36] Jia, B.; Xin, M.; Cheng, Y., Sparse Gauss-Hermite quadrature filter with application to spacecraft attitude estimation, J. guidance, Control, Dynamics, 27, 367-379, (2011)
[37] Stroud, A.H., Approximate Calculation of Multiple Integrals, Englewood Cliffs: Prentice Hall, 1971. · Zbl 0379.65013
[38] Meyer, C.D., Matrix Analysis and Applied Linear Algebra, Philadelphia: SIAM, 2000. · Zbl 0962.15001
[39] Groves, P.D., Principles of GNSS, (2013) · Zbl 1271.00005
[40] Straka, O.; Duník, J.; Šimandl, M., Unscented Kalman filter with advanced adaptation of scaling parameter, Automatica, 5, 2657-2664, (2014) · Zbl 1301.93156
[41] Straka, O.; Duník, J.; Šimandl, M., Scaling parameter in unscented transformation analysis and specification, (2012)
[42] Walter, É. and Pronzato, L., Identification of Parametric Models from Experimental Data, New York: Springer, 1997. · Zbl 0864.93014
[43] Li, X.R., Measure of nonlinearity for stochastic systems, (2012)
[44] Jones, E.; Scalzo, M.; Bubalo, A.; etal., Measures of nonlinearity for single target tracking problem, (2011)
[45] Duník, J.; Straka, O.; Šimandl, M., Nonlinearity and non-gaussianity measures for stochastic dynamic systems, (2013)
[46] Brewer, J.W., Kronecker products and matrix calculus in system theory, IEEE Trans. Circ. Syst., 25, 772-781, (1978) · Zbl 0397.93009
[47] Genz, A.; Monahan, J., A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight, J. Comput. Appl. Math., 112, 71-81, (1999) · Zbl 0943.65034
[48] Ristic, B., Arulampalam, S., and Gordon, N., Beyond the Kalman Filter Particle Filters for Tracking Applications, Boston: Artech House, 2004. · Zbl 1092.93041
[49] Bar-Shalom, Y., Li, X.R., and Kirubarajan, T., Estimation with Applications to Tracking and Navigation Theory Algorithms and Software, New York: Wiley, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.