×

zbMATH — the first resource for mathematics

Approximating high-dimensional dynamics by barycentric coordinates with linear programming. (English) Zbl 1345.37090
Summary: The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.
©2015 American Institute of Physics
MSC:
37M10 Time series analysis of dynamical systems
90C05 Linear programming
Software:
LIPSOL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mc Culloch, W. S.; Pitts, W., Bull. Math. Biophys., 5, 115, (1943) · Zbl 0063.03860
[2] Funahashi, K.-I., Neural Networks, 2, 183, (1989)
[3] Cybenko, G., Math. Control Signals Syst., 2, 303, (1989) · Zbl 0679.94019
[4] Hornik, K.; Stinchcombe, M.; White, H., Neural Networks, 2, 359, (1989) · Zbl 1383.92015
[5] Small, M.; Tse, C. K., Phys. Rev. E, 66, 066701, (2002)
[6] Lippman, R. P., IEEE Commun. Mag., 27, 47, (1989)
[7] Park, J.; Sandberg, I. W., Neural Comput., 3, 246, (1991)
[8] Leonard, J. A.; Kramer, M. A., IEEE Control Syst., 11, 31, (1991)
[9] Chen, S.; Cowan, C. E. N.; Grant, P. M., IEEE Trans. Neural Networks, 2, 302, (1991)
[10] Judd, K.; Mees, A., Phys. D, 82, 426, (1995) · Zbl 0888.58034
[11] Pilgram, B.; Judd, K.; Mees, A., Phys. D, 170, 103, (2002) · Zbl 1019.37046
[12] Gershenfeld, N., Nature of Mathematical Modeling, (1998), Cambridge University Press: Cambridge University Press, Cambridge
[13] Mees, A., Int. J. Bifurcation Chaos, 1, 777, (1991) · Zbl 0876.58045
[14] Matoušek, J.; Gärtner, B., Understanding and Using Linear Programming, (2007), Springer-Verlag: Springer-Verlag, Berlin · Zbl 1133.90001
[15] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, (2009), Springer: Springer, New York, NY · Zbl 1273.62005
[16] Mees, A., Dynamics of Complex Interconnected Biological Systems, 104, (1990), Birkhäuser: Birkhäuser, Boston, MA
[17] Allie, S.; Mees, A., Phys. Rev. E, 56, 346, (1997)
[18] Allie, S.; Mees, A.; Judd, K.; Watson, D., Phys. Rev. E, 55, 87, (1997)
[19] Hirata, Y., Phys. Rev. E, 89, 052916, (2014)
[20] Takens, F., Lect. Notes Math., 898, 366, (1981)
[21] Sauer, T.; Yorke, J. A.; Casdagli, M., J. Stat. Phys., 65, 579, (1991) · Zbl 0943.37506
[22] Zhang, Y., Technical Report TR96-01, (1996)
[23] Mehrotra, S., SIAM J. Optim., 2, 575, (1992) · Zbl 0773.90047
[24] Rössler, O. E., Phys. Lett. A, 57, 397, (1976) · Zbl 1371.37062
[25] Lorenz, E. N., J. Atmos. Sci., 20, 130, (1963) · Zbl 1417.37129
[26] Kaneko, K., Prog. Theor. Phys., 72, 480, (1984) · Zbl 1074.37521
[27] Lorenz, E. N., Proceedings of the Seminar on Predictability, 1, (1996), ECMWF: ECMWF, Reading
[28] Sugihara, G.; May, R. M., Nature, 344, 734, (1990)
[29] Cover, T. M.; Thomas, J. A., Elements of Information Theory, (1991), Wiley-Interscience: Wiley-Interscience, New York, NY · Zbl 0762.94001
[30] Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J., Eur. Phys. J. B, 84, 653, (2011)
[31] Feldhoff, J. H.; Donner, R. V.; Donges, J. F.; Marwan, N.; Kurths, J., Europhys. Lett., 102, 30007, (2013)
[32] Hao, B.-L.; Zheng, W.-M., Applied Symbolic Dynamics and Chaos, (1998), World Scientific: World Scientific, Singapore · Zbl 0914.58017
[33] Marwan, N.; Romano, M. C.; Thiel, M.; Kurths, J., Phys. Rep., 438, 237, (2007)
[34] Baba, A.; Komatsuzaki, T., Proc. Natl. Acad. Sci. U. S. A., 104, 19297, (2007)
[35] Bandt, C.; Pompe, B., Phys. Rev. Lett., 88, 174102, (2002)
[36] Bandt, C.; Keller, G.; Pompe, B., Nonlinearity, 15, 1595, (2002) · Zbl 1026.37027
[37] Amigó, J. M.; Kennel, M. B., Phys. D, 231, 137, (2007) · Zbl 1124.37007
[38] Amigó, J. M.; Kennel, M. B.; Kocarev, L., Phys. D, 210, 77, (2005) · Zbl 1149.37300
[39] Amigó, J. M.; Monetti, R.; Aschenbrenner, T.; Bunk, W., Chaos, 22, 013105, (2012) · Zbl 1331.37118
[40] Bravo, E. P.; Aihara, K.; Hirata, Y., Chaos, 23, 043104, (2013) · Zbl 1332.62336
[41] Arroyo, D.; Chamorro, P.; Amigó, J. M.; Rodríguez, F. B.; Varona, P., Eur. Phys. J. Spec. Top., 222, 457, (2013)
[42] Oya, S.; Aihara, K.; Hirata, Y., New J. Phys., 16, 115015, (2014)
[43] Goto, M., Development of the RWC music database, 553-556, (2004)
[44] See supplementary material at for the original violin sounds (supplementary Sound File 1) and the violin sounds generated by using the proposed barycentric coordinates (supplementary Sound File 2).
[45] Good, I. J., J. R. Stat. Soc. B, 14, 107, (1952)
[46] Du, H.; Smith, L. A., J. Atmos. Sci., 71, 469, (2014)
[47] Kuramoto, Y., Lect. Notes Phys., 39, 420, (1975)
[48] Takahashi, N., Hirata, Y., Aihara, K., and Mas, P., “ A hierarchical multi-oscillator network orchestrates the Arabidopsis circadian system,” (submitted).
[49] Nakamichi, N., Plant Cell, 22, 594, (2010)
[50] Mas, P.; Beachy, R. N., Plant J., 15, 835, (1998)
[51] Wenden, B.; Toner, D. L.; Hodge, S. K.; Grima, R.; Millar, A. J., Proc. Natl. Acad. Sci. U. S. A., 109, 6757, (2012)
[52] Abarbanel, H. D. I., Analysis of Observed Chaotic Data, (1996), Springer-Verlag: Springer-Verlag, New York, NY · Zbl 0890.93006
[53] Kantz, H.; Schreiber, T., Nonlinear Time Series Analysis, (1997), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0873.62085
[54] Small, M., Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, (2005), World Scienctific: World Scienctific, Singapore · Zbl 1186.62109
[55] Suckling, E. B.; Smith, L. A., J. Clim., 26, 9334, (2013)
[56] Kilminster, D., Modelling dynamical systems via behaviour criteria, (2003), School of Mathematics and Statistics
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.