×

zbMATH — the first resource for mathematics

Adaptive coarse spaces for FETI-DP in three dimensions. (English) Zbl 1346.74168

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65F10 Iterative numerical methods for linear systems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Software:
lobpcg.m; Matlab; BDDC; BDDCML
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Beira͂o da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, and S. Zampini, Isogeometric BDDC preconditioners with deluxe scaling, SIAM J. Sci. Comput., 36 (2014), pp. A1118–A1139, http://dx.doi.org/10.1137/130917399 doi:10.1137/130917399. · Zbl 1320.65047
[2] L. Beira͂o da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, and S. Zampini, Adaptive Selection of Primal Constraints for Isogeometric BDDC Deluxe Preconditioners, Tech. report TR2015-977, Courant Institute, New York University, New York, NY, 2015. · Zbl 1360.65090
[3] A. Ben-Israel and T. N. E. Greville, Generalized Inverses. Theory and Applications, 2nd ed., CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15, Springer-Verlag, New York, 2003. · Zbl 1026.15004
[4] P. Bjø rstad, J. Koster, and P. Krzyzanowski, Domain decomposition solvers for large scale industrial finite element problems, in Applied Parallel Computing. New Paradigms for HPC in Industry and Academia, Lecture Notes in Comput. Sci. 1947, Springer, Berlin, 2001, pp. 373–383.
[5] P. Bjø rstad and P. Krzyzanowski, A flexible 2-level Neumann-Neumann method for structural analysis problems, in Parallel Processing and Applied Mathematics, Lecture Notes in Comput. Sci. 2328, Springer, Berlin, 2002, pp. 387–394. · Zbl 1057.65516
[6] J. G. Calvo and O. B. Widlund, An Adaptive Choice of Primal Constraints for BDDC Domain Decomposition Algorithms, Tech. report TR2015-979, Courant Institute, New York University, New York, NY, 2015. · Zbl 1357.65295
[7] C. Dohrmann and C. Pechstein, Modern domain decomposition solvers - BDDC, deluxe scaling, and an algebraic approach, slides to a talk at NuMa Seminar, JKU Linz, Linz, Austria, December 10, 2013, http://people.ricam.oeaw.ac.at/c.pechstein/pechstein-bddc2013.pdf.
[8] C. R. Dohrmann, Robust constraint selection in BDDC algorithms for three-dimensional problems, talk at the 23rd International Conference on Domain Decomposition Methods in Science and Engineering, Jeju Island, South Korea, July 5–10, 2015.
[9] V. Dolean, F. Nataf, R. Scheichl, and N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps, Comput. Methods Appl. Math., 12 (2012), pp. 391–414. · Zbl 1284.65050
[10] Z. Dostál, Conjugate gradient method with preconditioning by projector, Int. J. Comput. Math., 23 (1988), pp. 315–323. · Zbl 0668.65034
[11] Z. Dostál, Projector preconditioning and domain decomposition methods, Appl. Math. Comput., 37 (1990), pp. 75–81. · Zbl 0701.65078
[12] Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems, Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 1175–1199. · Zbl 1272.65098
[13] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP: A dual-primal unified FETI method. I. A faster alternative to the two-level FETI method, Internat. J. Numer. Methods Engrg., 50 (2001), pp. 1523–1544. · Zbl 1008.74076
[14] C. Farhat, M. Lesoinne, and K. Pierson, A scalable dual-primal domain decomposition method, Numer. Linear Algebra Appl., 7 (2000), pp. 687–714. · Zbl 1051.65119
[15] J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model. Simul., 8 (2010), pp. 1461–1483, http://dx.doi.org/10.1137/090751190 doi:10.1137/090751190. · Zbl 1206.76042
[16] J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media: Reduced dimension coarse spaces, Multiscale Model. Simul., 8 (2010), pp. 1621–1644, http://dx.doi.org/10.1137/100790112 doi:10.1137/100790112. · Zbl 1381.65029
[17] S. Gippert, Domain Decomposition Methods for Elastic Materials with Compressible and Almost Incompressible Components, Ph.D. thesis, Universität Duisburg-Essen, Duisburg, Essen, Germany, 2012.
[18] S. Gippert, A. Klawonn, and O. Rheinbach, Analysis of FETI-DP and BDDC for linear elasticity in 3D with almost incompressible components and varying coefficients inside subdomains, SIAM J. Numer. Anal., 50 (2012), pp. 2208–2236, http://dx.doi.org/10.1137/110838315 doi:10.1137/110838315. · Zbl 1255.74063
[19] S. Gippert, A. Klawonn, and O. Rheinbach, A deflation based coarse space in dual-primal FETI methods for almost incompressible elasticity, in Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lect. Notes Comput. Sci. Eng. 103, A. Abdulle, S. Deparis, D. Kressner, F. Nobile, and M. Picasso, eds., Springer International Publishing, Berlin, 2015, pp. 573–581. · Zbl 1321.74070
[20] P. Goldfeld, L. F. Pavarino, and O. B. Widlund, Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity, Numer. Math., 95 (2003), pp. 283–324. · Zbl 1169.65346
[21] P. Gosselet, C. Rey, and D. J. Rixen, On the initial estimate of interface forces in FETI methods, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 2749–2764. · Zbl 1054.74728
[22] M. Jarošová, A. Klawonn, and O. Rheinbach, Projector preconditioning and transformation of basis in FETI-DP algorithms for contact problems, Math. Comput. Simulation, 82 (2012), pp. 1894–1907. · Zbl 1254.90147
[23] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392, http://dx.doi.org/10.1137/S1064827595287997 doi:10.1137/S1064827595287997. · Zbl 0915.68129
[24] H. H. Kim, BDDC and FETI-DP methods with enriched coarse spaces for elliptic problems with oscillatory and high contrast coefficients, talk at the 23rd International Conference on Domain Decomposition Methods in Science and Engineering, Jeju Island, South Korea, July 5–10, 2015.
[25] H. H. Kim, E. Chung, and J. Wang, BDDC and FETI-DP Algorithms with Adaptive Coarse Spaces for Three-Dimensional Elliptic Problems with Oscillatory and High Contrast Coefficients, preprint, http://arxiv.org/abs/1606.07560 arXiv:1606.07560 [math.NA], 2016. · Zbl 1380.65374
[26] H. H. Kim and E. T. Chung, A BDDC algorithm with enriched coarse spaces for two-dimensional elliptic problems with oscillatory and high contrast coefficients, Multiscale Model. Simul., 13 (2015), pp. 571–593, http://dx.doi.org/10.1137/140970598 doi:10.1137/140970598. · Zbl 1317.65090
[27] A. Klawonn, M. Kühn, P. Radtke, and O. Rheinbach, On three different approaches to adaptive coarse spaces for FETI-DP methods in 2D and on one approach in 3D, in 23rd International Conference on Domain Decomposition Methods in Science and Engineering, Jeju Island, South Korea, 2015.
[28] A. Klawonn, M. Kühn, and O. Rheinbach, Adaptive coarse spaces for FETI-DP in three dimensions with applications to heterogeneous diffusion problems, in Proceedings of the 23rd International Conference on Domain Decomposition Methods in Science and Engineering (Jeju Island, South Korea, July 5–10, 2015), Lect. Notes Comput. Sci. Eng., Springer International Publishing, Berlin, to appear.
[29] A. Klawonn, M. Kühn, and O. Rheinbach, Using local spectral information in domain decomposition methods—a brief overview in a nutshell, Proc. Appl. Math. Mech. (PAMM), submitted.
[30] A. Klawonn, M. Kühn, and O. Rheinbach, Adaptive Coarse Spaces for FETI-DP in Three Dimensions, Tech. report, Preprint 2015-11, Technische Universität Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 2015, http://tu-freiberg.de/fakult1/forschung/preprints. · Zbl 1346.74168
[31] A. Klawonn, P. Radtke, and O. Rheinbach, FETI-DP methods with an adaptive coarse space, SIAM J. Numer. Anal., 53 (2015), pp. 297–320, http://dx.doi.org/10.1137/130939675 doi:10.1137/130939675. · Zbl 1327.65063
[32] A. Klawonn, P. Radtke, and O. Rheinbach, A comparison of adaptive coarse spaces for iterative substructuring in two dimensions, Electron. Trans. Numer. Anal., 45 (2016), pp. 75–106. · Zbl 1338.65084
[33] A. Klawonn, P. Radtke, and O. Rheinbach, A Comparison of Adaptive Coarse Spaces for Iterative Substructuring in Two Dimensions, Tech. report, Preprint 2015-05, Technische Universität Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 2015, http://tu-freiberg.de/fakult1/forschung/preprints. · Zbl 1338.65084
[34] A. Klawonn and O. Rheinbach, A parallel implementation of dual-primal FETI methods for three-dimensional linear elasticity using a transformation of basis, SIAM J. Sci. Comput., 28 (2006), pp. 1886–1906, http://dx.doi.org/10.1137/050624364 doi:10.1137/050624364. · Zbl 1124.74049
[35] A. Klawonn and O. Rheinbach, Robust FETI-DP methods for heterogeneous three dimensional elasticity problems, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1400–1414. · Zbl 1173.74428
[36] A. Klawonn and O. Rheinbach, Deflation, projector preconditioning, and balancing in iterative substructuring methods: Connections and new results, SIAM J. Sci. Comput., 34 (2012), pp. A459–A484, http://dx.doi.org/10.1137/100811118 doi:10.1137/100811118. · Zbl 1248.65129
[37] A. Klawonn and O. B. Widlund, FETI and Neumann-Neumann iterative substructuring methods: Connections and new results, Comm. Pure Appl. Math., 54 (2001), pp. 57–90. · Zbl 1023.65120
[38] A. Klawonn and O. B. Widlund, Dual-primal FETI methods for linear elasticity, Comm. Pure Appl. Math., 59 (2006), pp. 1523–1572. · Zbl 1110.74053
[39] A. Klawonn, O. B. Widlund, and M. Dryja, Dual-primal FETI methods with face constraints, in Recent Developments in Domain Decomposition Methods, Lect. Notes Comput. Sci. Eng. 23, L. F. Pavarino and A. Toselli, eds., Springer, Berlin, Heidelberg, 2002, pp. 27–40. · Zbl 1009.65069
[40] A. V. Knyazev, Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method; MATLAB Implementation, https://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m (accessed 2015-12-09). · Zbl 0992.65028
[41] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541, http://dx.doi.org/10.1137/S1064827500366124 doi:10.1137/S1064827500366124. · Zbl 0992.65028
[42] M. Lanser, Nonlinear FETI-DP and BDDC Methods, Ph.D. thesis, Universität zu Köln, Köln, Germany, 2015.
[43] J. Li and O. B. Widlund, FETI-DP, BDDC, and block Cholesky methods, Internat. J. Numer. Methods Engrg., 66 (2006), pp. 250–271.
[44] J. Mandel and B. Sousedík, Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1389–1399. · Zbl 1173.74435
[45] J. Mandel, B. Sousedík, and J. Šístek, Adaptive BDDC in three dimensions, Math. Comput. Simulation, 82 (2012), pp. 1812–1831. · Zbl 1255.65225
[46] R. Nabben and C. Vuik, A comparison of deflation and the balancing preconditioner, SIAM J. Sci. Comput., 27 (2006), pp. 1742–1759, http://dx.doi.org/10.1137/040608246 doi:10.1137/040608246. · Zbl 1105.65049
[47] R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J. Numer. Anal., 24 (1987), pp. 355–365, http://dx.doi.org/10.1137/0724027 doi:10.1137/0724027. · Zbl 0624.65028
[48] D.-S. Oh, O. B. Widlund, S. Zampini, and C. R. Dohrmann, BDDC Algorithms with Deluxe Scaling and Adaptive Selection of Primal Constraints for Raviart-Thomas Vector Fields, Tech. report TR2015-978, Courant Institute, New York University, New York, NY, 2015. · Zbl 1380.65065
[49] C. Pechstein and C. R. Dohrmann, A Unified Framework for Adaptive BDDC, Tech. report, RICAM-Report 2016-20, Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences (ÖAW), Vienna, Austria, 2016.
[50] C. Pechstein and R. Scheichl, Analysis of FETI methods for multiscale PDEs. Part II: Interface variation, Numer. Math., 118 (2011), pp. 485–529. · Zbl 1380.65388
[51] P. Radtke, Adaptive Coarse Spaces for FETI-DP and BDDC Methods, Ph.D. thesis, Universität zu Köln, Köln, Germany, 2015.
[52] O. Rheinbach, Parallel Scalable Iterative Substructuring: Robust Exact and Inexact FETI-DP Methods with Applications to Elasticity, Ph.D. thesis, Universität Duisburg-Essen, Duisburg, Essen, Germany, 2006. · Zbl 1227.65002
[53] D. J. Rixen and C. Farhat, A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems, Internat. J. Numer. Methods Engrg., 44 (1999), pp. 489–516. · Zbl 0940.74067
[54] M. V. Sarkis Martins, Schwarz Preconditioners for Elliptic Problems with Discontinuous Coefficients Using Conforming and Non-conforming Elements, Ph.D. thesis, New York University, New York, NY, 1994.
[55] B. Sousedík, Comparison of Some Domain Decomposition Methods, Ph.D. thesis, Czech Technical University in Prague, Prague, Czech Republic, 2008.
[56] B. Sousedík, Adaptive-Multilevel BDDC, Ph.D. thesis, University of Colorado Denver, Denver, CO, 2010.
[57] B. Sousedík, J. Šístek, and J. Mandel, Adaptive-multilevel BDDC and its parallel implementation, Computing, 95 (2013), pp. 1087–1119. · Zbl 1307.65175
[58] N. Spillane, An adaptive multipreconditioned conjugate gradient algorithm, SIAM J. Sci. Comput., 38 (2016), pp. A1896–A1918, http://dx.doi.org/10.1137/15M1028534 doi:10.1137/15M1028534. · Zbl 1416.65087
[59] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, A robust two-level domain decomposition preconditioner for systems of PDEs, C. R. Math. Acad. Sci. Paris, 349 (2011), pp. 1255–1259. · Zbl 1252.65201
[60] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numer. Math., 126 (2014), pp. 741–770. · Zbl 1291.65109
[61] N. Spillane and D. J. Rixen, Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms, Internat. J. Numer. Methods Engrg., 95 (2013), pp. 953–990. · Zbl 1352.65553
[62] A. Toselli and O. B. Widlund, Domain Decomposition Methods—Algorithms and Theory, Springer Ser. Comput. Math. 34, Springer-Verlag, Berlin, 2005. · Zbl 1069.65138
[63] O. B. Widlund, BDDC algorithms with adaptive choices of the primal constraints, talk at the 23rd International Conference on Domain Decomposition Methods in Science and Engineering, Jeju Island, South Korea, July 5–10, 2015.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.