×

zbMATH — the first resource for mathematics

Strong stability preserving explicit linear multistep methods with variable step size. (English) Zbl 1348.65126

MSC:
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35L70 Second-order nonlinear hyperbolic equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems, general theory
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Software:
Pyclaw; PyWENO; SharpClaw
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, Strong Stability Preserving Runge–Kutta And Multistep Time Discretizations, World Scientific, Haekensack, NJ, 2011. · Zbl 1241.65064
[2] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed., Springer Ser. Comput. Math., Springer, Berlin, 1993. · Zbl 0789.65048
[3] W. Hundsdorfer and S. J. Ruuth, On monotonicity and boundedness properties of linear multistep methods, Math. Comp., 75 (2005), pp. 655–672. · Zbl 1092.65059
[4] W. Hundsdorfer, S. J. Ruuth, and R. J. Spiteri, Monotonicity-preserving linear multistep methods, SIAM J. Numer. Anal., 41 (2003), pp. 605–623. · Zbl 1050.65070
[5] David I. Ketcheson, Computation of optimal monotonicity preserving general linear methods, Math. Comp., 78 (2009), pp. 1497–1513. · Zbl 1198.65117
[6] D. I. Ketcheson, K. Mandli, A. J. Ahmadia, A. Alghamdi, M. Quezada de Luna, M. Parsani, M. G. Knepley, and M. Emmett, PyClaw: Accessible, extensible, scalable tools for wave propagation problems, SIAM J. Sci. Comput., 34 (2012), pp. C210–C231. · Zbl 1253.65220
[7] D. I. Ketcheson, M. Parsani, and R. J. LeVeque, High-order wave propagation algorithms for hyperbolic systems, SIAM J. Sci. Comput., 35 (2013), pp. A351–A377. · Zbl 1264.65151
[8] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, FL, 2002.
[9] H. W. J. Lenferink, Contractivity-preserving explicit linear multistep methods, Numer. Math., 55 (1989), pp. 213–223. · Zbl 0649.65043
[10] H. W. J. Lenferink, Contractivity-preserving implicit linear multistep methods, Math. Comp., 56 (1991), pp. 177–199. · Zbl 0722.65035
[11] A. Németh and D. I. Ketcheson, Existence and Optimality of Strong Stability Preserving Linear Multistep Methods: A Duality-Based Approach, preprint, arXiv:1504.03930, 2015.
[12] S. J. Ruuth and W. Hundsdorfer, High-order linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys., 209 (2005), pp. 226–248. · Zbl 1074.65085
[13] A. Schrijver, Theory of Linear and Integer Programming, Wiley Chichester, England, 1998. · Zbl 0970.90052
[14] B. van Leer, Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. Comput. Phys., 23 (1977), pp. 276–299. · Zbl 0339.76056
[15] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54 (1984), pp. 115–173. · Zbl 0573.76057
[16] X. Zhang and C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys., 229 (2010), pp. 3091–3120. · Zbl 1187.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.