×

zbMATH — the first resource for mathematics

On some \(hp\)-adaptive finite element method for natural vibrations. (English) Zbl 1381.74196
Summary: Model eigenproblem results obtained by some \(hp\)-adaptive FEM are presented. The FEM is based on the Texas 3-step strategy and the equilibrated residual method. The focus is on numerical experiments. The practical issues related to the above mentioned techniques are raised. The potentials of the method for engineering applications are demonstrated.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
74H45 Vibrations in dynamical problems in solid mechanics
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Software:
ARPACK; 3DmhpqAP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Oden, J.; Patra, A., A parallel adaptive strategy for hp finite element computations, Comput. Methods Appl. Mech. Engrg., 121, 449-470, (1995) · Zbl 0851.73067
[2] G. Zboiński, Hierarchical modeling and finite element method for analysis of complex structures, IFFM Publishers, Gdańsk, D.Sc. Thesis, 520/1479/2001, 2001 (in Polish).
[3] Demkowicz, L.; Banaś, K., 3d \(h p\) adaptive package. report 2/1993, (1993), Cracow University of Technology, Section of Applied Mathematics Cracow
[4] Zboiński, G., Adaptive \(h p q\) finite element methods for the analysis of 3d-based models of complex structures. part 1. hierarchical modeling and approximations, Comput. Methods Appl. Mech. Engrg., 199, 2913-2940, (2010) · Zbl 1231.74449
[5] Babuška, I.; Guo, B., Approximation properties of the \(h - p\) version of the finite element method, Comput. Methods Appl. Mech. Engrg., 133, 319-346, (1996) · Zbl 0882.65096
[6] Verfürth, R., A review of A posteriori error estimation and adaptive mesh-refinement techniques, (1996), Willey-Teubner Stuttgart · Zbl 0853.65108
[7] Ainsworth, M.; Oden, J., A posteriori error estimation in finite element analysis, (2000), John Wiley & Sons, Inc. New York · Zbl 1008.65076
[8] Grätsch, T.; Bathe, K. J., A posteriori error estimation techniques in practical finite element analysis, Comput. Struct., 83, 235-265, (2005)
[9] Zienkiewicz, C.; Zhu, J., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Eng., 24, 337-357, (1987) · Zbl 0602.73063
[10] Ladeveze, P.; Pelle, J., Accuracy in finite element computation for eigenfrequencies, Int. J. Numer. Methods Eng., 28, 1929-1949, (1989) · Zbl 0705.73250
[11] Schwab, C., \(p\)- and \(h p\)-finite element methods, theory and applications in solid and fluid mechanics, (1998), Claderon Press Oxford · Zbl 0910.73003
[12] Rachowicz, W.; Pardo, D.; Demkowicz, L., Fully automatic \(h p\)-adaptivity in three dimensions, Comput. Methods Appl. Mech. Engrg., 195, 4816-4842, (2006) · Zbl 1193.65203
[13] Houston, P.; Süli, E., A note on the design of \(h p\)-adaptive finite element methods for elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194, 229-243, (2005) · Zbl 1074.65131
[14] Rachowicz, W.; Oden, J.; Demkowicz, L., Towards a universal \(h p\) adaptive finite element strategy. part 3. design of \(h - p\) meshes, Comp. Methods Appl. Mech. Engrg, 77, 181-212, (1989) · Zbl 0723.73076
[15] Oden, J., The best FEM, Finite Elem. Anal. Des., 7, 103-114, (1990) · Zbl 0718.73079
[16] Demkowicz, L.; Rachowicz, W.; Devloo, Ph., A fully automatic \(h p\)-adaptivity, J. Sci. Comput., 17, 117-142, (2002) · Zbl 0999.65121
[17] Strang, G.; Fix, G., An analysis of the finite element method, (1973), Prentice Hall · Zbl 0278.65116
[18] Babuška, I.; Osborn, J., Eigenvalue problems, (Ciarlet, P.; Lions, J., Handbook of Numerical Analysis, Chapter Finite Element Methods (Part 1), vol. 2, (1991), Elsevier Paris), 641-787 · Zbl 0875.65087
[19] Ladevèze, P.; Pelle, J., Estimation of discretization errors in dynamics, Comput. Struct., 81, 1133-1148, (2003)
[20] Friberg, P., An error indicator for the generalized eigenvalue problem using the hierarchical finite element method, Int. J. Numer. Methods Eng., 23, 91-98, (1986) · Zbl 0597.65027
[21] Friberg, O.; Möller, P.; Makowička, D.; Wiberg, N. E., An adaptive procedure for eigenvalue problems using the hierarchical finite element method, Int. J. Numer. Methods Eng., 24, 319-335, (1987) · Zbl 0615.65042
[22] Wiberg, N. E.; Bausys, R.; Hager, P., Adaptive \(h\)-version eigenfrequency analysis, Comput. Struct., 71, 565-584, (1999)
[23] Wiberg, N. E.; Hager, P., Adaptive eigenfrequency analysis by superconvergent patch recovery, Comput. Methods Appl. Mech. Engrg., 176, 441-462, (1999) · Zbl 0939.74066
[24] Hager, P.; Wiberg, N. E., Error estimation and \(h\)-adaptivity for eigenfrequency analysis of plates in bending: numerical results, Comput. Struct., 78, 1-10, (2000)
[25] Baušys, R.; Hager, P.; Wiberg, N. E., Postprocessing techniques and \(h\)-adaptive finite element-eigenproblem analysis, Comput. Struct., 79, 2039-2052, (2001)
[26] Stephen, D.; Steven, G., Error estimation in natural frequency finite element analysis, Finite Elements in Analysis and Design, 26, 21-40, (1997) · Zbl 0914.73066
[27] Stephen, D.; Steven, G., Natural frequency error estimation using a patch recovery technique, J. Sound Vib., 200, 151-165, (1997)
[28] Fuenmayor, F.; Restrepo, J.; Taracon, J.; Baeza, L., Error estimation and \(h\)-adaptive refinement in the analysis of natural frequencies, Finite Elements in Analysis and Design, 38, 137-153, (2001) · Zbl 1093.74562
[29] Neumann, J.; Schweizerhof, K., Computation of single eigenfrequencies and eigenfunctions of plate and shell structures using \(h\)-adaptive fe-method, Computational Mechanics, 40, 111-126, (2007) · Zbl 1166.74041
[30] Liu, H.; Gong, G.; Wei, Y., Adaptive eigenfrequency analysis by improved \(r\)- and \(h\)-adaptive finite element method based on perturbation and element energy ratio, Acta Mech. Solida Sin., 14, 349-356, (2001)
[31] Heuveline, V.; Rannacher, R., A posteriori error control for finite element approximations of elliptic eigenvalue problems, Adv. Comput. Math., 15, 107-138, (2001) · Zbl 0995.65111
[32] Becker, R.; Rannacher, R., An optimal control apporach to a posteriori error estimation in finite element methods, Acta Numer., 37, 1-225, (2001)
[33] Verfürth, R., A review of a posteriori error estimation techniques for elasticity problems, Comput. Methods Appl. Mech. Engrg., 176, 419-440, (1999) · Zbl 0935.74072
[34] Maday, Y.; Patera, A.; Peraire, J., A general formulation for a posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem, C. R. Acad. Sci., Paris Ser. I, 328, 823-828, (1999) · Zbl 0933.65129
[35] D. Scholz, An anisotropic \(p\)-adaptive method for linear elastostatic and elastodynamic analysis of thin-walled and massive structures. Faculty of Civil Engineeribg and Geodesy, Technical University of Munich, Munich, Ph.D. Thesis, 2006.
[36] Oden, J.; Prudhomme, S.; Westermann, T.; Bass, J.; Botkin, M., Error estimation of eigenfrequencies for elasticity and shell problems, Mathematical Models and Methods in Applied Sciences, 13, 323-344, (2003) · Zbl 1058.74081
[37] Oden, J.; Prudhomme, S.; Westermann, T.; Bass, J., Development of a post-processor for a posteriori error estimation of quantities of interest, annual report, (2002), General Motors Co., Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin Austin
[38] Bardell, N.; Langley, R.; Dunsdon, J.; Aglietti, G., An \(h - p\) finite element vibration analysis of open conical sandwich panels and conical sandwich frusta, J. Sound Vib., 226, 345-377, (1999)
[39] Dalenbring, M.; Zdunek, A., On the use of three-dimensional \(h\)- an \(p\)-version finite elements in solving vibration response problems, J. Sound Vib., 288, 907-929, (2005)
[40] M. Jasiński, G. Zboiński, An \(h p\)-adaptive analysis of some linear free vibration problems, in: III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering, Lisbon, Portugal, et al. CMS (ed.), Lisbon, Portugal, 2006. 405 and 1-9 (CD Rom).
[41] M. Jasiński, Natural vibrations of linear elastic systems by means of an adaptive finite element method. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Gdańsk, Ph.D. Thesis, 2007 (in Polish).
[42] Szabó, B.; Actis, R., Finite element analysis in professional practice, Comput. Methods Appl. Mech. Engrg., 133, 209-228, (1996) · Zbl 0918.73110
[43] Arnold, W., Mathematical methods of classical mechanics, (1981), PWN Warszawa, (in Polish)
[44] Zboiński, G.; Jasiński, M., 3d-based \(h p\)-adaptive first order shell finite element for modelling and analysis of complex structures. part 1. the model and the approximation, Int. J. Numer. Methods Eng., 70, 1513-1545, (2007) · Zbl 1194.74487
[45] Zboiński, G., A posteriori error estimation for \(h p\)-approximation of the 3d-based first order shell model. part I. theoretical aspects, Applied Mathematics, Informatics and Mechanics, 8, 1, 104-125, (2003) · Zbl 1078.74056
[46] Zboiński, G., A posteriori error estimation for \(h p\)-approximation of the 3d-based first order shell model. part II. implementation aspects, Applied Mathematics, Informatics and Mechanics, 8, 2, 59-83, (2003) · Zbl 1079.74058
[47] Oden, J.; Prudhomme, S.; Demkowicz, L., Error estimation for wave propagation problems, ICES report 04-32, (2004), The Institute for Computational Engineering and Sciences, The University of Texas at Austin Austin
[48] Babuška, I.; Strouboulis, T.; Mathur, A.; Upadhyay, C., Pollution error in \(h\)-version of the finite element method and the local quality of A-posteriori error estimators, technical note BN-1163, (1994) · Zbl 0924.65098
[49] R. Lehoucq, D. Sorensen, C. Yang, Arpack users’ guide: Solution of large scale eigenvalue problems with implicitly restarted arnoldi methods 8 Oct 97. http://www.caam.rice.edu/software/ARPACK/. · Zbl 0901.65021
[50] C.C. Ashcraft, R.G. Grimes, D.J. Pierce, D.K. Wah, Solving linear systems using spooles 2.2 2002. http://www.netlib.org/linalg/spooles/spooles.2.2.html.
[51] Liew, K.; Xiang, Y.; Kitipornchai, S., Transverse vibration of thick rectangular plates—I. comprehensive sets of boudary conditions, Comput. Struct., 49, 1-29, (1993)
[52] Young, D., Vibration of rectangular plates by the Ritz method, J. Appl. Mech., 17, 448-453, (1950) · Zbl 0039.20701
[53] Zboiński, G., Application of the 3d triangular-prism \(h p q\) adaptive finite element to plate and shell analysis, Comput. Struct., 67, 497-514, (1997) · Zbl 0922.73071
[54] Zboiński, G.; Ostachowicz, W., An algorithm of a family of 3d-based, solid-to-shell, \(h p q / h p\)-adaptive finite elements, J. Theoret. Appl. Mech., 38, 791-806, (2000)
[55] Zboiński, G.; Jasiński, M., Adaptive 3d-based solid, shell and transition elements for modal analysis, report no. 3290/2003, (2003), Institute of Fluid Flow Machinery, Polish Academy of Sciences, (in Polish)
[56] G. Zboiński, Adaptive \(h p q\) finite element methods for the analysis of 3d-based models of complex structures. Part 2. A posteriori error estimation, Comput. Methods Appl. Mech. Engrg. http://dx.doi.org/10.1016/j.cma.2013.08.018.
[57] Zboiński, G.; Jasiński, M., Adaptive analysis of eigenvalues and eigenmodes of vibration of the elastic mechanical systems, report of the project PB 1296/T07/03/24, report no. 6740/2006, (2006), Institute of Fluid Flow Machinery, Polish Academy of Sciences Gdańsk, (in Polish)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.