Bierlein, D.; Stich, W. J. A. On the extremality of measure extensions. (English) Zbl 0663.28004 Manuscr. Math. 63, No. 1, 89-97 (1989). Main result: Let \(\mu\) denote a finite measure on a \(\sigma\)-algebra \({\mathfrak A}\) of subsets of a set \(\Omega\) and introduce \({\mathfrak A}'\) as the \(\sigma\)-algebra of subsets of \(\Omega\) generated by \({\mathfrak A}\) and a finite decomposition \(A_ 1,A_ 2,...,A_ m\) of \(\Omega\). Then any extension \(\mu\) ’ of \(\mu\) to \({\mathfrak A}'\) as a measure can be represented as a mixture of extremal extension of \(\mu\) to \({\mathfrak A}'\), where the mixing probability measure is discrete. It might be interesting to mention, that the existence of a mixing probability measure living on the set of extremal extensions of \(\mu\) to \(\mu\) ’ as a measure can also be proved by means of Choquet’s theorem under the additional assumption, that \({\mathfrak A}'\) is countably generated. However, the discreteness of the representing probability measure does not follow from Choquet’s theorem. Nevertheless, Choquet’s theorem admits a finitely additive version, if \({\mathfrak A}\) is replaced by a countable algebra of subsets of \(\Omega\) and \({\mathfrak A}'\) denotes the algebra of subsets of \(\Omega\) generated by \({\mathfrak A}\) and countable many subsets of \(\Omega\). Reviewer: D.Plachky Cited in 1 ReviewCited in 8 Documents MSC: 28A33 Spaces of measures, convergence of measures Keywords:extremal extension of measures; mixing probability measure PDFBibTeX XMLCite \textit{D. Bierlein} and \textit{W. J. A. Stich}, Manuscr. Math. 63, No. 1, 89--97 (1989; Zbl 0663.28004) Full Text: DOI EuDML References: [1] Bierlein, D.: Über die Fortsetzung von Wahrscheinlichkeitsfeldern. Z. Wahrscheinlichkeitstheorie verw. Gebiete 1, 28-46 (1962) · Zbl 0109.10601 · doi:10.1007/BF00531770 [2] Bierlein, D.: Measure extensions and measurable neighbours of a function. Lect. Notes Math. 794, 1-23 (1980) · Zbl 0425.28003 · doi:10.1007/BFb0088207 [3] Douglas, R. G.: On extremal measures and subspace density. Mich. Math. J. 11, 243-246 (1964) · Zbl 0121.33102 · doi:10.1307/mmj/1028999137 [4] Ershov, M. P.: The Choquet theorem and stochastic equations. Analysis Mathematica 1, 259-271 (1975) · Zbl 0322.60004 · doi:10.1007/BF02333176 [5] Ershov, M. P.: Second disintegration of measures. Institutsbericht No. 135, Math. Inst. Univ. Linz (1979) · Zbl 0432.60061 [6] Plachky, D.: Zur Fortsetzung additiver Mengenfunktionen. Habilitationsschrift, Universität Münster (1971) [7] Plachky, D.: Extremal and monogenic additive set functions. Proc. Am. Math. Soc. 54, 193-196 (1976) · Zbl 0285.28005 · doi:10.1090/S0002-9939-1976-0419711-3 [8] von Weizsäcker, H.: Der Satz von Choquet-Bishop-de Leeuw für konvexe nicht kompakte Mengen straffer Maße über beliebigen Grundräumen. Math. Z. 142, 161-165. (1975) · Zbl 0287.28002 · doi:10.1007/BF01214946 [9] von Weizsäcker, H. and Winkler, G.: Integral representations in the set of solutions of a generalized moment problem. Math. Ann. 246, 23-32 (1979) · doi:10.1007/BF01352023 [10] Winkler, G.: On the integral representation in convex noncompact sets of tight measures. Math. Z. 158, 71-77 (1978) · doi:10.1007/BF01214567 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.