×

zbMATH — the first resource for mathematics

Characterization of the subspaces of (s) in the tame category. (English) Zbl 0663.46003
This article contains a complete characterization of all graded Fréchet spaces, i.e. Fréchet spaces equipped with a fixed fundamental system of seminorms, which are tamely isomorphic to a subspace of s, the space of rapidly decreasing sequences. D. Vogt characterizes in [Math. Z. 155, 109-117 (1977; Zbl 0337.46015)] the subspaces of s in the topological category of Fréchet spaces by property (DN), proving a splitting theorem for exact sequences of Fréchet spaces and using the Komura imbedding theorem. In this paper we introduce a condition called (DNDZ) which characterizes the subspaces of s in the tame category. To do that, we show the equivalence of property (DNDZ) and a certain tame splitting theorem which is also of independent interest. Besides, we develop the concept of tame nuclearity and include a tame version of the Komura imbedding theorem.
Reviewer: M.Poppenberg

MSC:
46A04 Locally convex Fréchet spaces and (DF)-spaces
46A45 Sequence spaces (including Köthe sequence spaces)
46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
Citations:
Zbl 0337.46015
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. Dubinsky andD. Vogt, Bases in complemented subspaces of power series spaces. Bull. Acad. Polon. Sci.34, 65-67 (1986). · Zbl 0649.46019
[2] R. S. Hamilton, The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc.7, 65-222 (1982). · Zbl 0499.58003
[3] G.Köthe, Topologische lineare Räume. Berlin-Heidelberg-New York 1960.
[4] J. Moser, A new technique for the construction of solutions of non-linear differential equations. Proc. Nat. Acad. Sci. USA47, 1824-1831 (1961). · Zbl 0104.30503
[5] A.Pietsch, Nuclear locally convex spaces. Ergeb. Math. Grenzgeb.66, (1972). · Zbl 0308.47024
[6] M.Poppenberg, Unterräume und Quotienten von (s) in der zahmen Kategorie. Dissertation, Dortmund 1987. · Zbl 0696.46006
[7] H. H.Schaefer,Topological vector spaces. Berlin-Heidelberg-New York 1971. · Zbl 0212.14001
[8] F. Sergeraert, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications. Ann. Sci. École Norm. Sup. (4)5, 599-660 (1972). · Zbl 0246.58006
[9] T. Terzioglu, Die diametrale Dimension von lokalkonvexen Räumen. Collect. Math.20, 49-99 (1969). · Zbl 0175.41602
[10] D. Vogt, Charakterisierung der Unterräume vons. Math. Z.155, 109-117 (1977). · Zbl 0337.46015
[11] D.Vogt, Power series space representations of nuclear Fréchet spaces. Preprint. · Zbl 0724.46007
[12] D.Vogt, Subspaces and quotient spaces of (s), Funct. anal. surv. and rec. results, (Ed.: K. D. Bierstedt and B. Fuchssteiner), Proc. Conf. Paderborn 167-187 (1976).
[13] D. Vogt, Tame spaces and power series spaces. Math. Z.196, 523-536 (1987). · Zbl 0622.46004
[14] D. Vogt undM. J. Wagner, Charakterisierung der Unterräume und der Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ. Studia Math.70, 63-80 (1981). · Zbl 0402.46008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.