zbMATH — the first resource for mathematics

Hecke algebras of type \(A_ n\) and subfactors. (English) Zbl 0663.46055
The author studies how subfactors of the hyperfinite \(II_ 1\) factor can be constructed using AF-algebras. He studies the invariants of the constructed subfactors, in particular its index in the sense of V. F. R. Jones [Invent. Math. 72, 1-25 (1983; Zbl 0508.46040)], and gives an upper bound for the size of its centralizer. These results are then applied to the series of complex Hecke algebras \(H_ n(q)\) of type \(A_{n-1}\) equipped with a suitable trace.
Reviewer: G.Loupias

46L35 Classifications of \(C^*\)-algebras
Full Text: DOI EuDML
[1] [B] Birman, J.: Braids, links and mapping class groups. Ann. Math. Stud.82 (1974)
[2] [F] [FYHLMO] Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc.12, 239-246 (1985) · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3
[3] [G] Gantmacher, F.R.: Matrix theory, Vol. II, Chelsea Publishing Company: New York, 1974
[4] [HW] Handelman, D., Wenzl, H.: Closedness of index values for subfactors. Proc. Am Math. Soc.101, 277-282 (1987) · Zbl 0638.46042 · doi:10.1090/S0002-9939-1987-0902541-0
[5] [H] Hoefsmit, P.N.: Representations of Hecke algebras of finite groups with BN pairs of classical type. Thesis, University of British Columbia, 1974
[6] [JK] James, G., Kerber, A.: The representations of the symmetric group. Addison-Wesley: Reading, Mass
[7] [J-1] Jones, V.F.R.: Index for subfactors. Invent. Math.72, 1-25 (1983) · Zbl 0508.46040 · doi:10.1007/BF01389127
[8] [J-2] Jones, V.F.R.: Braid groups, Hecke algebras and type II1 factors. Japan-US Conference proceedings, 1983
[9] [J-3] Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc.12, 103-111 (1985) · Zbl 0564.57006 · doi:10.1090/S0273-0979-1985-15304-2
[10] [J-4] Jones, V.F.R.: Hecke algebra representations of braid groups. Ann. Math.126, 335-388 (1987) · Zbl 0631.57005 · doi:10.2307/1971403
[11] [L] Littlewood, D.: The theory of group characters. Oxford University Press, 1940 · JFM 66.0093.02
[12] [Mc] McDonald, I.: Symmetric functions and Hall polynomials. Clarendon Press: Oxford, 1979
[13] [M] Murnaghan, F.: The theory of group representations. Dover, New York, 1939
[14] [O] Ocneanu, A.: A polynomial invariant for knots: A combinatorial and an algebraic approach (Preprint, see [FYHLMO] for a shortened version)
[15] [PP1] Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. Ec. Norm. Super, 4 e serie,19, 57-106 (1986) · Zbl 0646.46057
[16] [PP2] Pimsner, M., Popa, S.: Iterating the basic construction (Preprint, INCREST) · Zbl 0706.46047
[17] [St] Størmer, E.: Symmetric states of infinite tensor products ofC * algebras J. Funct. Anal.3, 48-68 (1969) · Zbl 0167.43403 · doi:10.1016/0022-1236(69)90050-0
[18] [SV] Stratila, S., Voiculescu, D.: Representations ofAF-algebras and of the groupU(?). Lect. Notes Math., Vol. 486. Berlin Heidelberg New York: Springer 1975
[19] [T] Thoma, E.: Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzaehlbaren, unendlichen, symmetrischen Gruppe. Math. Z.85, 40-61 (1964) · Zbl 0192.12402 · doi:10.1007/BF01114877
[20] [Wa] Wassermann, A.: Automorphic actions of compact groups on operator algebras. Thesis, University of Pennsylvania 1981
[21] [W-1] Wenzl, H.: On sequences of projections. C.R. Math. Rep. Acad. Sci. Canada IX,1, 5-9 (1987) · Zbl 0622.47019
[22] [W-2] Wenzl, H.: Representations of Hecke algebras and subfactors. Thesis, University of Pennsylvania 1985
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.