zbMATH — the first resource for mathematics

Semi-classical asymptotics for local spectral densities and time delay problems in scattering processes. (English) Zbl 0663.47009
The authors study the semiclassical asymptotics (h\(\to 0)\) for local spectral densities of Schrödinger operators \(H(h)=-h^ 2\Delta +V\) in \({\mathbb{R}}^ n\), \(n\geq 2\). For a class of central potentials it is shown that the local spectral density converges to the corresponding quantity in a stronger sense than proved in previous papers if the energy is restricted to a certain “non-trapping” region. As a consequence the authors proved the convergence of the quantum time delay to its classical value in the non-trapping region.
Reviewer: R.Alicki

47A40 Scattering theory of linear operators
34L99 Ordinary differential operators
47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
Full Text: DOI
[1] Agmon, S, Spectral properties of Schrödinger operators and scattering theory, Ann. scuola norm. sup. Pisa, 2, 151-218, (1975) · Zbl 0315.47007
[2] Birman, M.S; Krein, M.G, On the theory of wave operators and scattering operators, Dokl. akad. nauk SSSR, 144, 475-478, (1962), [Im Russian]
[3] Chazarain, J, Spectre d’un hamiltonien quantique et mecanique classique, Comm. partial differential equations, 5, 595-644, (1980) · Zbl 0437.70014
[4] de Verdière, Y.Colin, Une formule de trace pour l’operateur de Schrödinger dans R3, Ann. sci. école norm. sup., 14, 27-39, (1981) · Zbl 0482.35068
[5] Enss, V; Simon, B, Total cross sections in non-relativistic scattering theory, () · Zbl 0471.35065
[6] Gohberg, I.C; Krein, M.G, Introduction to the theory of linear nonselfadjoint operators, (1969), Amer. Math. Soc Providence, RI · Zbl 0181.13504
[7] Guillopé, L, Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger avec potentiel, C. R. acad. sci. Paris, 293, 601-603, (1981) · Zbl 0487.35073
[8] Helffer, B; Robert, D, Čomportement semi-classique du spectre des hamiltoniens quantiques elliptiques, Ann. inst. Fourier (Grenoble), 31, 169-233, (1981) · Zbl 0451.35022
[9] Helffer, B; Robert, D, Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. funct. anal., 53, 246-268, (1983) · Zbl 0524.35103
[10] Helton, J; Ralston, J, The first variation of the scattering matrix, J. differential equations, 21, 378-394, (1976) · Zbl 0343.35069
[11] Isozaki, H; Kitada, H, Modified wave operators with time-independent modifiers, J. fac. sci. univ. Tokyo sect. IA math., 32, 77-104, (1985) · Zbl 0582.35036
[12] Jauch, J.M; Sinha, K.B; Misra, B.N, Time-delay in scattering processes, Helv. phys. acta, 45, 398-426, (1972)
[13] Jensen, A, Time delay in potential scattering theory, Comm. math. phys., 82, 435-456, (1981) · Zbl 0483.47031
[14] Jensen, A; Kato, T, Asymptotic behavior of the scattering phase for exterior domains, Comm. partial differential equations, 3, 1165-1195, (1978) · Zbl 0419.35067
[15] Krein, M.G, On the trace formula in the theory of perturbation, Mat. sb., 33, 597-626, (1953), [In Russian] · Zbl 0052.12303
[16] Lavine, R, Classical limit of the number of quantum states, () · Zbl 1029.81028
[17] Popov, G.S; Shubin, M.A; Popov, G.S; Shubin, M.A, Asymptotic expansion of the spectral function for second order elliptic operators in Rn, Funktsional anal. i prilozhen, Functional anal. appl., 17, No. 3, 37-45, (1983), [in Russian] · Zbl 0548.35093
[18] Reed, M; Simon, B, Methods of modern mathematical physics. III. scattering theory, (1979), Academic Press New York · Zbl 0405.47007
[19] Robert, D, Autour de l’approximation semi-classique, Notas de curso, instituto de math., no. 21, (1983), Birkhauser PM68
[20] Robert, D; Tamura, H, Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. inst. H. Poincaré, 46, No. 4, 415-442, (1987) · Zbl 0648.35066
[21] Simon, B, Schrödinger semigroups, Bull. amer. math. soc., 7, 447-526, (1982) · Zbl 0524.35002
[22] Vainberg, B.R; Vainberg, B.R, A complete asymptotic expansion of the spectral function of second order elliptic operators in Rn, Mat. sb., Math. USSR-sb., 51, 191-206, (1985), [in Russian] · Zbl 0573.35070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.