×

zbMATH — the first resource for mathematics

Common divisors of solvable polynomials in JAS. (English) Zbl 1434.68709
Greuel, Gert-Martin (ed.) et al., Mathematical software – ICMS 2016. 5th international conference, Berlin, Germany, July 11–14, 2016. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 9725, 173-180 (2016).
Summary: We present generic, type safe (non-unique) common divisors of solvable polynomials software. The solvable polynomial rings are defined with non-commuting variables, moreover, in case of parametric (solvable) coefficients the main variables may not commute with the coefficients. The interface, class organization is described in the object-oriented programming environment of the Java algebra system (JAS). The implemented algorithms can be applied, for example, in solvable extension field and root construction. We show the design and feasibility of the implementation in the mentioned applications.
For the entire collection see [Zbl 1342.68017].
MSC:
68W30 Symbolic computation and algebraic computation
Software:
Plural; JAS; Felix; NCPOLY
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Apel, J., Klaus, U.: FELIX - an assistant for algebraists. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC 1991, Bonn, Germany, 15–17 July 1991, pp. 382–389 (1991) · Zbl 0925.68238
[2] Apel, J., Lassner, W.: Computation and simplification in Lie fields. In: EUROCAL 1987, pp. 468–478 (1987) · Zbl 1209.68663
[3] Apel, J., Melenk, H.: NCPOLY: computation in non-commutative polynomial ideals. Technical report (2004). http://www.reduce-algebra.com/docs/ncpoly.pdf
[4] Bueso, J.L., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups. Kluwer Academic Publishers, Dordrecht (2003) · Zbl 1063.16054
[5] Kandri Rody, A., Weispfennning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symbol Comput. 9(1), 1–26 (1990) · Zbl 0715.16010
[6] Kredel, H.: Solvable Polynomial Rings. Dissertation, Universität Passau, Passau (1992) · Zbl 0790.16027
[7] Kredel, H.: On a Java computer algebra system, its performance and applications. Sci. Comput. Program. 70(2–3), 185–207 (2008) · Zbl 1140.68351
[8] Kredel, H.: Unique factorization domains in the Java computer algebra system. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 86–115. Springer, Heidelberg (2011) · Zbl 1302.13020
[9] Kredel, H.: Parametric solvable polynomial rings and applications. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 275–291. Springer, Heidelberg (2015) · Zbl 1434.16021
[10] Kredel, H.: The Java Algebra System (JAS). Technical report, since 2000. http://krum.rz.unimannheim.de/jas/
[11] Levandovskyy, V.: Plural, a non–commutative extension of singular: past, present and future. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 144–157. Springer, Heidelberg (2006) · Zbl 1229.16001
[12] Levandovskyy, V., Schönemann, H.: Plural: a computer algebra system for noncommutative polynomial algebras. In: Proceedings of the Symbolic and Algebraic Computation, International Symposium ISSAC 2003, Philadelphia, USA, pp. 176–183 (2003) · Zbl 1072.68681
[13] Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theor. Comput. Sci. 134(1), 131–173 (1994) · Zbl 0824.68056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.