zbMATH — the first resource for mathematics

Limits of spiked random matrices. II. (English) Zbl 1396.60004
Author’s abstract: The top eigenvalues of rank \(r\) spiked real Wishart matrices and additively perturbed Gaussian orthogonal ensembles are known to exhibit a phase transition in the large size limit. We show that they have limiting distributions for near-critical perturbations, fully resolving the conjecture of J. Baik [Duke Math. J. 133, No. 2, 205–235 (2006; Zbl 1139.33006)]. The starting point is a new \((2r + 1)\)-diagonal form that is algebraically natural to the problem; for both models it converges to a certain random Schrödinger operator on the half-line with \(r\times r\) matrix-valued potential. The perturbation determines the boundary condition and the low-lying eigenvalues describe the limit, jointly as the perturbation varies in a fixed subspace. We treat the real, complex and quaternion (\(\beta = 1; 2; 4\)) cases simultaneously. We further characterize the limit laws in terms of a diffusion related to Dyson’s Brownian motion, or alternatively a linear parabolic PDE; here \(\beta\) appears simply as a parameter. At \(\beta = 2\), the PDE appears to reconcile with known Painlevé formulas for these \(r\)-parameter deformations of the GUE Tracy-Widom law.
For Part I, see [the authors, Probab. Theory Relat. Fields 156, No. 3–4, 795–825 (2013; Zbl 1356.60014)].

60B20 Random matrices (probabilistic aspects)
60B12 Limit theorems for vector-valued random variables (infinite-dimensional case)
Full Text: DOI Euclid arXiv
[1] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices . Cambridge Univ. Press, Cambridge. · Zbl 1184.15023
[2] Baik, J. (2006). Painlevé formulas of the limiting distributions for nonnull complex sample covariance matrices. Duke Math. J. 133 205-235. · Zbl 1139.33006
[3] Baik, J., Ben Arous, G. and Péché, S. (2005). Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 1643-1697. · Zbl 1086.15022
[4] Baik, J. and Rains, E. M. (2000). Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100 523-541. · Zbl 0976.82043
[5] Baik, J. and Rains, E. M. (2001). The asymptotics of monotone subsequences of involutions. Duke Math. J. 109 205-281. · Zbl 1007.60003
[6] Baik, J. and Wang, D. (2013). On the largest eigenvalue of a Hermitian random matrix model with spiked external source II: Higher rank cases. Int. Math. Res. Not. IMRN 14 3304-3370. · Zbl 1315.15033
[7] Baur, G. and Kratz, W. (1989). A general oscillation theorem for selfadjoint differential systems with applications to Sturm-Liouville eigenvalue problems and quadratic functionals. Rend. Circ. Mat. Palermo (2) 38 329-370. · Zbl 0704.34030
[8] Bloemendal, A. and Baik, J. (2013). Unpublished manuscript.
[9] Bloemendal, A. and Virág, B. (2013). Limits of spiked random matrices I. Probab. Theory Related Fields 156 795-825. · Zbl 1356.60014
[10] Dumitriu, I. and Edelman, A. (2002). Matrix models for beta ensembles. J. Math. Phys. 43 5830-5847. · Zbl 1060.82020
[11] Dyson, F. J. (1962). A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191-1198. · Zbl 0111.32703
[12] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes : Characterization and Convergence . Wiley, New York. · Zbl 0592.60049
[13] Forrester, P. J. (2013). Probability densities and distributions for spiked and general variance Wishart \(\beta\)-ensembles. Random Matrices Theory Appl. 2 1350011, 19. · Zbl 1281.15042
[14] Halmos, P. R. (1951). Introduction to Hilbert Space and the Theory of Spectral Multiplicity . Chelsea, New York. · Zbl 0045.05702
[15] Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327. · Zbl 1016.62078
[16] Mo, M. Y. (2012). Rank 1 real Wishart spiked model. Comm. Pure Appl. Math. 65 1528-1638. · Zbl 1257.15020
[17] Morse, M. (1932). The Calculus of Variations in the Large. American Mathematical Society Colloquium Publications 18 . Amer. Math. Soc., Providence, RI. (1996 reprint of the original). · Zbl 0007.21203
[18] Morse, M. (1973). Variational Analysis : Critical Extremals and Sturmian Extensions . Interscience Publishers [Wiley], New York. · Zbl 0255.49002
[19] Ramírez, J. A., Rider, B. and Virág, B. (2011). Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Amer. Math. Soc. 24 919-944. · Zbl 1239.60005
[20] Reed, M. and Simon, B. (1980). Methods of Modern Mathematical Physics. I : Functional Analysis , 2nd ed. Academic Press, Inc., New York. · Zbl 0459.46001
[21] Reid, W. T. (1971). Ordinary Differential Equations . Wiley, New York. · Zbl 0212.10901
[22] Reid, W. T. (1972). Riccati Differential Equations . Academic Press, New York. · Zbl 0254.34003
[23] Trotter, H. F. (1984). Eigenvalue distributions of large Hermitian matrices; Wigner’s semicircle law and a theorem of Kac, Murdock, and Szegő. Adv. Math. 54 67-82. · Zbl 0562.15005
[24] Wang, D. (2008). Spiked Models in Wishart Ensemble, Ph.D. thesis, Brandeis Univ. Available at . arXiv:0804.0889v1
[25] Weidmann, J. (1997). Strong operator convergence and spectral theory of ordinary differential operators. Univ. Iagel. Acta Math. 34 153-163. · Zbl 0964.47004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.