Density analysis of BSDEs. (English) Zbl 1462.60079

Summary: In this paper, we study the existence of densities (with respect to the Lebesgue measure) for marginal laws of the solution \((Y,Z)\) to a quadratic growth BSDE. Using the (by now) well-established connection between these equations and their associated semi-linear PDEs, together with the Nourdin-Viens formula, we provide estimates on these densities.


60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H07 Stochastic calculus of variations and the Malliavin calculus
Full Text: DOI arXiv Euclid


[1] Aboura, O. and Bourguin, S. (2013). Density estimates for solutions to one dimensional backward SDE’s. Potential Anal. 38 573-587. · Zbl 1273.60066
[2] Ankirchner, S., Imkeller, P. and Dos Reis, G. (2007). Classical and variational differentiability of BSDEs with quadratic growth. Electron. J. Probab. 12 1418-1453 (electronic). · Zbl 1138.60042
[3] Antonelli, F. and Kohatsu-Higa, A. (2005). Densities of one-dimensional backward SDEs. Potential Anal. 22 263-287. · Zbl 1082.60047
[4] Barrieu, P. and El Karoui, N. (2007). Pricing , hedging and optimally designing derivatives via minimization of risk measures . Available at [math.PR]. arXiv:0708.0948
[5] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Encyclopedia of Mathematics and Its Applications 27 . Cambridge Univ. Press, Cambridge. · Zbl 0667.26003
[6] Chassagneux, J.-F. and Richou, A. (2016). Numerical simulation of quadratic BSDEs. Ann. Appl. Probab. 26 262-304. · Zbl 1334.60129
[7] dos Reis, G. and dos Reis, R. J. N. (2013). A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE. Stoch. Dyn. 13 1350005, 11. · Zbl 1279.60084
[8] Dos Reis, G. (2010). On some properties of solutions of quadratic growth BSDE and applications in finance and insurance. Ph.D. thesis, Humboldt Univ., Berlin. Available at .
[9] El Karoui, N., Hamadene, S. and Matoussi, A. (2008). Backward stochastic differential equations and applications. In Indifference Pricing : Theory and Applications (R. Carmona, ed.) 267-320. Springer, Berlin.
[10] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1-71. · Zbl 0884.90035
[11] Fournier, N. and Printems, J. (2010). Absolute continuity for some one-dimensional processes. Bernoulli 16 343-360. · Zbl 1248.60062
[12] Hu, Y., Imkeller, P. and Müller, M. (2005). Utility maximization in incomplete markets. Ann. Appl. Probab. 15 1691-1712. · Zbl 1083.60048
[13] Imkeller, P. and Dos Reis, G. (2010). Path regularity and explicit convergence rate for BSDE with truncated quadratic growth. Stochastic Process. Appl. 120 348-379. · Zbl 1196.60101
[14] Imkeller, P., Réveillac, A. and Richter, A. (2012). Differentiability of quadratic BSDEs generated by continuous martingales. Ann. Appl. Probab. 22 285-336. · Zbl 1254.60058
[15] Jacobson, D. H. (1973). Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games. IEEE Trans. Automat. Control AC-18 124-131. · Zbl 0274.93067
[16] Kazamaki, N. (1994). Continuous Exponential Martingales and BMO. Lecture Notes in Math. 1579 . Springer, Berlin. · Zbl 0806.60033
[17] Kobylanski, M. (2000). Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 558-602. · Zbl 1044.60045
[18] Kohatsu-Higa, A. (2003). Lower bounds for densities of uniformly elliptic non-homogeneous diffusions. In Stochastic Inequalities and Applications. Progress in Probability 56 323-338. Birkhäuser, Basel. · Zbl 1040.60046
[19] Kohatsu-Higa, A. (2003). Lower bounds for densities of uniformly elliptic random variables on Wiener space. Probab. Theory Related Fields 126 421-457. · Zbl 1022.60056
[20] Ma, J. and Zhang, J. (2002). Path regularity for solutions of backward stochastic differential equations. Probab. Theory Related Fields 122 163-190. · Zbl 1014.60060
[21] Ma, J. and Zhang, J. (2002). Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12 1390-1418. · Zbl 1017.60067
[22] Nourdin, I. and Viens, F. G. (2009). Density formula and concentration inequalities with Malliavin calculus. Electron. J. Probab. 14 2287-2309. · Zbl 1192.60066
[23] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Springer, Berlin. · Zbl 1099.60003
[24] Nualart, E. and Quer-Sardanyons, L. (2012). Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension. Stochastic Process. Appl. 122 418-447. · Zbl 1246.60089
[25] Pardoux, É. and Peng, S. (1992). Backward stochastic differential equations and quasilinear parabolic partial differential equations. In Stochastic Partial Differential Equations and Their Applications ( Charlotte , NC , 1991). Lecture Notes in Control and Inform. Sci. 176 200-217. Springer, Berlin. · Zbl 0766.60079
[26] Pardoux, É. and Peng, S. G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55-61. · Zbl 0692.93064
[27] Rouge, R. and El Karoui, N. (2000). Pricing via utility maximization and entropy. Math. Finance 10 259-276. · Zbl 1052.91512
[28] Seneta, E. (1976). Regularly Varying Functions. Lecture Notes in Mathematics 508 . Springer, Berlin. · Zbl 0324.26002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.