×

Dual estimation of fractional variable order based on the unscented fractional order Kalman filter for direct and networked measurements. (English) Zbl 1345.93158

Summary: The paper is devoted to variable order estimation process when measurements are obtained in two different ways: directly and by lossy network. Since the problem of fractional order estimation is highly nonlinear, dual estimation algorithm based on unscented fractional order Kalman filter has been used. In dual estimation process, state variable and order estimation have been divided into two sub-processes. For estimation state variables and variable fractional order, the fractional Kalman filter and the unscented fractional Kalman filter have been used, respectively. The order estimation algorithms were applied to numerical examples and to real fractional variable order inertial system realized as an analog circuit.

MSC:

93E11 Filtering in stochastic control theory
93E10 Estimation and detection in stochastic control theory
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Caballero-Aguila, R, Extended and unscented filtering algorithms in nonlinear fractional order systems with uncertain observations, Appl. Math. Sci., 6, 1471-1486, (2012) · Zbl 1253.62067
[2] A. Dzielinski, D. Sierociuk, Reachability, controllability and observability of the fractional order discrete statespace system, in Proceedings of the IEEE/IFAC International Conference on Methods and Models in Automation and Robotics, MMAR’2007 (Szczecin, Poland, 2007), pp. 129-134
[3] Dzielinski, A; Sierociuk, D, Ultracapacitor modelling and control using discrete fractional order state-space model, Acta Montan. Slovaca, 13, 136-145, (2008) · Zbl 1229.93143
[4] B. Gibbs, Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook (Wiley, New York, 2011)
[5] S. Haykin, Kalman Filtering and Neural Networks (Wiley, New York, 2001)
[6] Kalman Rudolph, E, A new approach to linear filtering and prediction problems, Trans. ASME J. Basic Eng., 82, 35-45, (1960)
[7] Kiani-B, A; Fallahi, K; Pariz, N; Leung, H, A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun. Nonlinear Sci. Numer. Simul., 14, 863-879, (2009) · Zbl 1221.94049
[8] Lorenzo, C; Hartley, T, Variable order and distributed order fractional operators, Nonlinear Dyn., 29, 57-98, (2002) · Zbl 1018.93007
[9] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993) · Zbl 0789.26002
[10] M. Moayedi, Y. Soh, Y. Foo, Optimal Kalman filtering with random sensor delays, packet dropouts and missing measurements, in Proceedings of the American Control Conference (ACC 2009), (2009), pp. 3405-3410 · Zbl 1367.93633
[11] C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-Order Systems and Controls (Springer, New York, 2010) · Zbl 1211.93002
[12] K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, London, 1974) · Zbl 0292.26011
[13] I. Podlubny, Fractional Differential Equations (Academic Press, London, 1999) · Zbl 0924.34008
[14] L.E.S. Ramirez, C.F.M. Coimbra, On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010, 846107 (2010). doi:10.1155/2010/846107 · Zbl 1207.34011
[15] S. Samko, A. Kilbas, O. Maritchev, Fractional Integrals and Derivative. Theory and Applications (Gordon & Breach Science Publishers, New York, 1987)
[16] Schenato, L, Optimal estimation in networked control systems subject to random delay and packet drop, IEEE Trans. Autom. Control, 53, 1311-1317, (2008) · Zbl 1367.93633
[17] J. Schutter, J. Geeter, T. Lefebvre, H. Bruynickx, Kalman filters: a tutorial. Journal A 40(4), 52-59 (1999) · Zbl 1342.93109
[18] H. Sheng, Y. Chen, T. Qiu, Signal Processing Fractional Processes and Fractional-Order Signal Processing (Springer, London, 2012) · Zbl 1245.94004
[19] D. Sierociuk, Fractional Variable Order Derivative Simulink Toolkit (2012). http://www.mathworks.com/matlabcentral/fileexchange/38801-fractional-variable-order-derivative-simulink-toolkit
[20] D. Sierociuk, Uzycie ulamkowego filtru kalmana do estymacji parametrow ukladu ulamkowego rzedu (Using of Fractional Kalman Filter for parameters estimation of fractional order system), in XV Krajowa Konferencja Automatyki (Warsaw, Poland, 2005) · Zbl 1203.94055
[21] D. Sierociuk, System properties of fractional variable order discrete state-space system, in Proceedings of the 13th International Carpathian Control Conference (ICCC) (2012), pp. 643-648
[22] Sierociuk, D, Fractional Kalman filter algorithms for correlated system and measurement noises, Control Cybern., 42, 471-490, (2013) · Zbl 1318.93091
[23] Sierociuk, D; Dzieliński, A, Fractional Kalman filter algorithm for states, parameters and order of fractional system estimation, Appl. Math. Comput. Sci., 16, 129-140, (2006) · Zbl 1334.93172
[24] D. Sierociuk, A. Dzielinski, New method of fractional order integrator analog modeling for orders 0.5 and 0.25, in Proceedings of the 16th International Conference on Methods and Models in Automation and Robotics (MMAR) (Miedzyzdroje, Poland, 2011), pp. 137 -141 · Zbl 1253.62067
[25] D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371(1990), 20120146 (2013). doi:10.1098/rsta.2012.0146 · Zbl 1382.80004
[26] D. Sierociuk, M. Macias, P. Ziubinski, Experimental results of modeling variable order system based on discrete fractional variable order state-space model, in Theoretical Developments and Applications of Non-Integer Order Systems, Lecture Notes in Electrical Engineering, vol. 357, eds. by S. Domek, P. Dworak (Springer International Publishing 2016), pp. 129-139
[27] Sierociuk, D; Malesza, W; Macias, M, Derivation, interpretation, and analog modelling of fractional variable order derivative definition, Appl. Math. Model., 39, 3876-3888, (2015)
[28] Sierociuk, D; Malesza, W; Macias, M, On the recursive fractional variable-order derivative: equivalent switching strategy, duality, and analog modeling, Circuits Syst. Signal Process., 34, 1077-1113, (2015) · Zbl 1342.94132
[29] D. Sierociuk, W. Malesza, M. Macias, Practical analog realization of multiple order switching for recursive fractional variable order derivative, in Proceedings of the 20th International Conference on Methods and Models in Automation and Robotics (MMAR) (Miedzyzdroje, Poland , 2015) · Zbl 1342.94132
[30] Sierociuk, D; Skovranek, T; Macias, M; Podlubny, I; Petras, I; Dzielinski, A; Ziubinski, P, Diffusion process modeling by using fractional-order models, Appl. Math. Comput., 257, 2-11, (2015)
[31] Sierociuk, D; Tejado, I; Vinagre, BM, Improved fractional Kalman filter and its application to estimation over lossy networks, Signal Process., 91, 542-552, (2011) · Zbl 1203.94055
[32] Sierociuk, D; Twardy, M, Duality of variable fractional order difference operators and its application to identification, Bull. Pol. Acad. Sci. Tech. Sci., 62, 809-815, (2014)
[33] Sierociuk, D; Ziubinski, P, Fractional order estimation schemes for fractional and integer order systems with constant and variable fractional order colored noise, Circuits Syst. Signal Process., 33, 3861-3882, (2014) · Zbl 1342.93109
[34] D. Sierociuk, P. Ziubinski, Variable order fractional kalman filters for estimation over lossy network, in Lecture Notes in Electrical Engineering, vol. 320 (2015), pp. 285-294
[35] J. Sum, C. Leung, L. Chan, Extended kalman filter in recurrent neural network training and pruning. Technical Report, Department of Computer Science and Engineering, The Chinese University of Hong Kong (1996). CS-TR-96-05 · Zbl 1253.62067
[36] Valerio, D; da Costa, JS, Variable-order fractional derivatives and their numerical approximations, Signal Process., 91, 470-483, (2011) · Zbl 1203.94060
[37] E.A. Wan, R. van der Merwe, A.T. Nelson, Dual estimation and the unscented transformation, in Advances in Neural Information Processing Systems, vol. 12 (2000), pp. 666-672
[38] E.A. Wan, A.T. Nelson, Dual kalman filtering methods for nonlinear prediction, smoothing, and estimation, in Advances in Neural Information Processing Systems, vol. 9 (1997)
[39] L. Yi, S. Hexu, L. Zhaoming, Z. Jian, Design for wireless networked control systems with time-delay and data packet dropout, in Proceedings of the 27th Chinese Control Conference (CCC 2008), vol. 4 (2008), pp. 656-659
[40] P. Ziubinski, D. Sierociuk, Improved fractional kalman filter for variable order systems, in Proceedings of International Conference on Fractional Differentiation and its Applications (Catania, Italy, 2014) · Zbl 1342.93109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.