×

zbMATH — the first resource for mathematics

\(K\)-theory of minuscule varieties. (English) Zbl 1431.19001
Summary: Based on Thomas and Yong’s \(K\)-theoretic jeu de taquin algorithm, we prove a uniform Littlewood-Richardson rule for the \(K\)-theoretic Schubert structure constants of all minuscule homogeneous spaces. Our formula is new in all types. For the main examples of Grassmannians of type A and maximal orthogonal Grassmannians it has the advantage that the tableaux to be counted can be recognized without reference to the jeu de taquin algorithm.

MSC:
19E99 \(K\)-theory in geometry
14M15 Grassmannians, Schubert varieties, flag manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Billey S., Jockusch W. and Stanley R., Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), no. 4, 345-374. · Zbl 0790.05093
[2] Brion M., Positivity in the Grothendieck group of complex flag varieties, J. Algebra 258 (2002), no. 1, 137-159. · Zbl 1052.14054
[3] Buch A. S., A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math. 189 (2002), no. 1, 37-78. · Zbl 1090.14015
[4] Buch A. S., Combinatorial K-theory, Topics in cohomological studies of algebraic varieties, Trends Math., Birkhäuser, Basel (2005), 87-103.
[5] Buch A. S., Kresch A., Shimozono M., Tamvakis H. and Yong A., Stable Grothendieck polynomials and K-theoretic factor sequences, Math. Ann. 340 (2008), no. 2, 359-382. · Zbl 1157.14036
[6] Buch A. S. and Mihalcea L. C., Curve neighborhoods of Schubert varieties, preprint 2013, . · Zbl 06423472
[7] Buch A. S. and Ravikumar V., Pieri rules for the K-theory of cominuscule Grassmannians, J. reine angew. Math. 668 (2012), 109-132. · Zbl 1298.14059
[8] Chaput P.-E., Manivel L. and Perrin N., Quantum cohomology of minuscule homogeneous spaces, Transform. Groups 13 (2008), no. 1, 47-89. · Zbl 1147.14023
[9] Clifford E., Thomas H. and Yong A., K-theoretic Schubert calculus for \(\operatorname{OG}(n,2n+1)\) and jeu de taquin for shifted increasing tableaux, preprint 2010, .
[10] Fan C. K., A Hecke algebra quotient and some combinatorial applications, J. Algebraic Combin. 5 (1996), no. 3, 175-189. · Zbl 0853.20028
[11] Fomin S. and Greene C., Noncommutative Schur functions and their applications, Discrete Math. 193 (1998), no. 1-3, 179-200. · Zbl 1011.05062
[12] Fomin S. and Kirillov A. N., Grothendieck polynomials and the Yang-Baxter equation, Proceedings of the 6th international conference on formal power series and algebraic combinatorics, DIMACS (1994), 183-190.
[13] Fulton W., Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin 1998. · Zbl 0885.14002
[14] Graham W., Equivariant K-theory and Schubert varieties, preprint 2002.
[15] Humphreys J. E., Introduction to Lie algebras and representation theory, Grad. Texts in Math. 9, Springer, New York, 1972.
[16] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math. 29, Cambridge University Press, Cambridge, 1990.
[17] Knutson A., Schubert patches degenerate to subword complexes, Transform. Groups 13 (2008), no. 3-4, 715-726. · Zbl 1200.14099
[18] Kostant B. and Kumar S., T-equivariant K-theory of generalized flag varieties, J. Differential Geom. 32 (1990), no. 2, 549-603. · Zbl 0731.55005
[19] Lascoux A., Transition on Grothendieck polynomials, Physics and combinatorics (Nagoya 2000), World Scientific Publishing, River Edge (2001), 164-179. · Zbl 1052.14059
[20] Lascoux A. and Schützenberger M.-P., Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629-633. · Zbl 0542.14030
[21] Lenart C., Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb. 4 (2000), no. 1, 67-82. · Zbl 0958.05128
[22] Lenart C. and Postnikov A., Affine Weyl groups in K-theory and representation theory, Int. Math. Res. Not. IMRN (2007), no. 12, ID rnm 038. · Zbl 1137.14037
[23] Littlewood D. E. and Richardson A. R., Group characters and algebra, Phil. Trans. R. Soc. A 233 (1934), 99-141. · JFM 60.0896.01
[24] Perrin N., Small resolutions of minuscule Schubert varieties, Compos. Math. 143 (2007), no. 5, 1255-1312. · Zbl 1129.14069
[25] Pragacz P., Algebro-geometric applications of Schur S- and Q-polynomials, Topics in invariant theory, Lecture Notes in Math. 1478, Springer, Berlin (1991), 130-191. · Zbl 0783.14031
[26] Proctor R., Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), no. 4, 331-350. · Zbl 0562.05003
[27] Proctor R., d-Complete posets generalize Young diagrams for the jeu de taquin property, preprint 2009, .
[28] Richardson R. W., Intersections of double cosets in algebraic groups, Indag. Math. (N.S.) 3 (1992), no. 1, 69-77. · Zbl 0833.22001
[29] Schützenberger M.-P., La correspondance de Robinson, Combinatoire et représentation du groupe symétrique, Lecture Notes in Math. 579, Springer, Berlin (1977), 59-113. · Zbl 0398.05011
[30] Stembridge J. R., Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), no. 1, 87-134. · Zbl 0677.20012
[31] Stembridge J. R., On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996), no. 4, 353-385. · Zbl 0864.20025
[32] Thomas G. P., Baxter algebras and Schur functions, Ph.D. thesis, University College of Swansea 1974.
[33] Thomas H. and Yong A., A combinatorial rule for (co)minuscule Schubert calculus, Adv. Math. 222 (2009), no. 2, 596-620. · Zbl 1208.14052
[34] Thomas H. and Yong A., A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus, Algebra Number Theory 3 (2009), no. 2, 121-148. · Zbl 1229.05285
[35] Thomas H. and Yong A., The direct sum map on Grassmannians and jeu de taquin for increasing tableaux, Int. Math. Res. Not. IMRN (2011), no. 12, 2766-2793. · Zbl 1231.05280
[36] Willems M., K-théorie équivariante des tours de Bott. Application à la structure multiplicative de la K-théorie équivariante des variétés de drapeaux, Duke Math. J. 132 (2006), no. 2, 271-309. · Zbl 1118.19002
[37] Worley D., A theory of shifted Young tableaux, Ph.D. thesis, Massachusetts Institute of Technology 1984.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.