Stability of systems with stochastic delays and applications to genetic regulatory networks. (English) Zbl 1353.37106


37H10 Generation, random and stochastic difference and differential equations
92C42 Systems biology, networks
Full Text: DOI


[1] R. F. V. Anderson, The relative variance criterion for stability of delay systems, J. Dynam. Differential Equations, 5 (1993), pp. 105–128, https://doi.org/10.1007/BF01063737. · Zbl 0770.34054
[2] A. Arkin, J. Ross, and H. H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in Phage \(λ\)-infected Escherichia coli cells, Genetics, 149 (1998), pp. 1633–1648.
[3] L. Arnold, H. Crauel, and V. Wihstutz, Stabilization of linear systems by noise, SIAM J. Control Optim., 21 (1983), pp. 451–461, https://doi.org/10.1137/0321027. · Zbl 0514.93069
[4] G. K. Basak, Stabilization of dynamical systems by adding a colored noise, IEEE Trans. Automat. Control, 46 (2001), pp. 1107–1111, https://doi.org/10.1109/9.935065. · Zbl 1005.93047
[5] M. B. G. Cloosterman, N. van de Wouw, W. P. M. H. Heemels, and H. Nijmeijer, Stability of networked control systems with uncertain time-varying delays, IEEE Trans. Automat. Control, 54 (2009), pp. 1575–1580, https://doi.org/10.1109/TAC.2009.2015543. · Zbl 1367.93459
[6] D. Del Vecchio and R. M. Murray, Biomolecular Feedback Systems, Princeton University Press, Princeton, NJ, 2014. · Zbl 1300.92001
[7] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, and H. O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Appl. Math. Sci. 110, Springer, New York, 1995. · Zbl 0826.34002
[8] K. Engelborghs, T. Luzyanina, and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-biftool, ACM Trans. Math. Software, 28 (2002), pp. 1–21, https://doi.org/10.1145/513001.513002. · Zbl 1070.65556
[9] T. Erneux, Applied Delay Differential Equations, Surv. Tutor. Appl. Math. Sci. 3, Springer, New York, 2009. · Zbl 1201.34002
[10] M. Farkas and G. Stépán, On perturbation of the kernel in infinite delay systems, Z. Angew. Math. Mech., 72 (1992), pp. 153–156, https://doi.org/10.1002/zamm.19920720216.
[11] R. M. Feldman and C. V. Flores, Applied Probability and Stochastic Processes, Springer, Berlin, Heidelberg, 2010. · Zbl 1201.60001
[12] H. Gao and T. Chen, New results on stability of discrete-time systems with time-varying state delay, IEEE Trans. Automat. Control, 52 (2007), pp. 328–334, https://doi.org/10.1109/TAC.2006.890320. · Zbl 1366.39011
[13] M. Ghasemi, S. Zhao, T. Insperger, and T. Kalmár-Nagy, Act-and-wait control of discrete systems with random delays, in Proceedings of the American Control Conference, 2012, pp. 5440–5443.
[14] D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81 (1977), pp. 2340–2361, https://doi.org/10.1021/j100540a008.
[15] C. Gupta, J. M. López, R. Azencott, M. R. Bennett, K. Josić, and W. Ott, Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations, J. Chem. Phys., 140 (2014), 204108, https://doi.org/10.1063/1.4878662.
[16] F. Hartung, T. Insperger, G. Stépán, and J. Turi, Approximate stability charts for milling processes using semi-discretization, Appl. Math. Comput., 174 (2006), pp. 51–73, https://doi.org/10.1016/j.amc.2005.05.008. · Zbl 1168.65364
[17] T. Insperger and G. Stépán, Semi-discretization method for delayed systems, Internat. J. Numer. Methods Engrg., 55 (2002), pp. 503–518, https://doi.org/10.1002/nme.505. · Zbl 1032.34071
[18] T. Insperger and G. Stépán, Stability analysis of turning with periodic spindle speed modulation via semidiscretization, J. Vib. Control, 10 (2004), pp. 1835–1855, https://doi.org/10.1177/1077546304044891. · Zbl 1093.70010
[19] T. Insperger and G. Stépán, Semi-discretization for Time-Delay Systems: Stability and Engineering Applications, Appl. Math. Sci. 178, Springer, New York, 2011.
[20] T. Insperger, G. Stépán, and Turi, State-dependent delay in regenerative turning processes, Nonlinear Dynam., 47 (2007), pp. 275–283, https://doi.org/10.1007/s11071-006-9068-2. · Zbl 1177.74197
[21] K. Josić, J. M. López, W. Ott, L. Shiau, and M. R. Bennett, Stochastic delay accelerates signaling in gene networks, PLoS Comput. Biol., 7 (2011), e1002264, https://doi.org/10.1371/journal.pcbi.1002264.
[22] I. Kats, On the stability of systems with random delay in the first approximation, Prikl. Mat. Meh., 31 (1967), pp. 447–452 (in Russian); J. Appl. Math. Mech., 31 (1967), pp. 478–482 (in English).
[23] S. Klumpp, A superresolution census of RNA polymerase, Biophys. J., 105 (2013), pp. 2613–2614, https://doi.org/10.1016/j.bpj.2013.11.018.
[24] V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations, Math. Sci. Eng. 180, Academic Press, London, 1986.
[25] I. Kolmanovsky and T. L. Maizenberg, Stochastic stability of a class of nonlinear systems with randomly varying time-delay, in Proceedings of the American Control Conference, 2000, pp. 4304–4308.
[26] H. J. Kushner, Introduction to Stochastic Control, Holt, Rinehart and Winston, New York, Montreal, London, 1971. · Zbl 0293.93018
[27] A. A. Kwiecińska, Stabilization of partial differential equations by noise, Stochastic Process. Appl., 79 (1999), pp. 179–184, https://doi.org/10.1016/S0304-4149(98)00080-5.
[28] J. Lewis, Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator, Curr. Biol., 13 (2003), pp. 1398–1408, https://doi.org/10.1016/S0960-9822(03)00534-7.
[29] E. A. Lidskii, On stability of motion of a system with random delays, Differential\('\)nye Uravnenia, 1 (1965), pp. 96–101 (in Russian).
[30] X. Liu and J. Shen, Stability theory of hybrid dynamical systems with time delay, IEEE Trans. Automat. Control, 51 (2006), pp. 620–625, https://doi.org/10.1109/TAC.2006.872751. · Zbl 1366.93441
[31] D. M. Longo, J. Selimkhanov, J. D. Kearns, J. Hasty, A. Hoffmann, and L. S. Tsimring, Dual delayed feedback provides sensitivity and robustness to the nf-\(κ\)b signaling module, PLoS Comput. Biol., 9 (2013), e1003112, https://doi.org/10.1371/journal.pcbi.1003112.
[32] M. C. Mackey, A. Longtin, and A. Lasota, Noise-induced global asymptotic stability, J. Statist. Phys., 60 (1990), pp. 735–751, https://doi.org/10.1007/BF01025992. · Zbl 1086.34534
[33] J. Mallet-Paret and H. L. Smith, The Poincaré-Bendixson theorem for monotone cyclic feedback systems, J. Dynam. Differential Equations, 2 (1990), pp. 367–421, https://doi.org/10.1007/BF01054041. · Zbl 0712.34060
[34] X. Mao, Exponential stability of stochastic delay interval systems with Markovian switching, IEEE Trans. Automat. Control, 47 (2002), pp. 1604–1612, https://doi.org/10.1109/TAC.2002.803529. · Zbl 1364.93685
[35] W. Mather, M. R. Bennett, J. Hasty, and L. S. Tsimring, Delay-induced degrade-and-fire oscillations in small genetic circuits, Phys. Rev. Lett., 102 (2009), 068105, https://doi.org/10.1103/PhysRevLett.102.068105.
[36] H. H. McAdams and A. Arkin, It’s a noisy business! Genetic regulation at the nanomolar scale, Trends Genet., 15 (1999), pp. 65–69, https://doi.org/10.1016/S0168-9525(98)01659-X.
[37] W. Michiels, V. Van Assche, and S.-I. Niculescu, Stabilization of time-delay systems with a controlled time-varying delay, IEEE Trans. Automat. Control, 50 (2005), pp. 493–504, https://doi.org/10.1109/TAC.2005.844723. · Zbl 1365.93411
[38] N. A. Monk, Oscillatory expression of Hes1, p53, and NF-\(κ\)b driven by transcriptional time delays, Curr. Biol., 13 (2003), pp. 1409–1413, https://doi.org/10.1016/S0960-9822(03)00494-9.
[39] A. N. Naganathan and V. Mun͂oz, Scaling of folding times with protein size, J. Am. Chem. Soc., 127 (2005), pp. 480–481, https://doi.org/10.1021/ja044449u.
[40] G. Orosz, J. Moehlis, and R. M. Murray, Controlling biological networks by time-delayed signals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 368 (2010), pp. 439–454, https://doi.org/10.1098/rsta.2009.0242. · Zbl 1205.34109
[41] P. G. Park, A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Trans. Automat. Control, 4 (1999), pp. 876–877. · Zbl 0957.34069
[42] X. Pu and H. Zhao, Stability of a kind of hybrid systems with time delay, in Advances in Electronic Engineering, Communication and Management, Lect. Notes Electr. Eng. 139, Springer, Berlin, Heidelberg, 2012, pp. 159–165, https://doi.org/10.1007/978-3-642-27287-5_26.
[43] W. B. Qin, M. M. Gomez, and G. Orosz, Stability and frequency response under stochastic communication delays with applications to connected cruise control design, IEEE Trans. Intell. Transp. Syst., (2016), https://doi.org/10.1109/TITS.2016.2574246.
[44] D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations, in Numerical Continuation Methods for Dynamical Systems, Underst. Complex Syst., B. Krauskopf, H. M. Osinga, and J. Galan-Vioque, eds., Springer, Dordrecht, 2007, pp. 359–399, https://doi.org/10.1007/978-1-4020-6356-5_12. · Zbl 1132.34001
[45] H. Smith, An Introduction to Delay Differential Equations with Sciences Applications to the Life, Texts Appl. Math. 57, Springer, New York, 2011. · Zbl 1227.34001
[46] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman Res. Notes Math. Ser. 210, Longman, Harlow/John Wiley and Sons, New York, 1989.
[47] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring, and J. Hasty, A fast, robust and tunable synthetic gene oscillator, Nature, 456 (2008), pp. 516–519, https://doi.org/10.1038/nature07389.
[48] T. Tian, K. Burrage, P. M. Burrage, and M. Carletti, Stochastic delay differential equations for genetic regulatory networks, J. Comput. Appl. Math., 205 (2007), pp. 696–707, https://doi.org/10.1016/j.cam.2006.02.063. · Zbl 1112.92029
[49] M. Tigges, T. T. Marquez-Lago, J. Stelling, and M. Fussenegger, A tunable synthetic mammalian oscillator, Nature, 457 (2009), pp. 309–312, https://doi.org/10.1038/nature07616.
[50] O. S. Venturelli, H. El-Samad, and R. M. Murray, Synergistic dual positive feedback loops established by molecular sequestration generate robust bimodal response, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. E3324–E3333, https://doi.org/10.1073/pnas.1211902109.
[51] E. I. Verriest and W. Michiels, Stability analysis of systems with stochastically varying delays, Systems Control Lett., 58 (2009), pp. 783–791, https://doi.org/10.1016/j.sysconle.2009.08.009. · Zbl 1181.93088
[52] U. Vogel and K. F. Jensen, The RNA chain elongation rate in Escherichia coli depends on the growth rate, J. Bacteriol., 176 (1994), pp. 2807–2813.
[53] P. Xing-Cheng and Y. Wei, Stability of hybrid stochastic systems with time-delay, ISRN Math. Anal., 2014, 423413. · Zbl 1286.93195
[54] C. Yuan and X. Mao, Stability of stochastic delay hybrid systems with jumps, Eur. J. Control, 16 (2010), pp. 595–608, https://doi.org/10.3166/ejc.16.595-608. · Zbl 1216.93095
[55] D. Yue, Y. Zhang, E. Tian, and C. Peng, Delay-distribution-dependent exponential stability criteria for discrete-time recurrent neural networks with stochastic delay, IEEE Trans. Neural Netw., 19 (2008), pp. 1299–1306, https://doi.org/10.1109/TNN.2008.2000166.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.