Perrin-Riou, Bernadette \(p\)-adic \(L\)-functions, Iwasawa theory and Heegner points. (Fonctions \(L\) \(p\)-adiques, théorie d’Iwasawa et points de Heegner.) (French) Zbl 0664.12010 Bull. Soc. Math. Fr. 115, 399-456 (1987). Let \(E\) be a modular elliptic curve over \({\mathbb Q}\) of conductor \(N\). Let \(k\) be an imaginary quadratic field such that each prime factor of \(N\) splits in \(k\). Denote by \(k_{\infty}/k\) the unique \({\mathbb Z}^ 2_ p\)-extension of \(k\); it is the composition of the cyclotomic extension \(C_{\infty}\) and the dihedral extension \(D_{\infty}.\) The author studies an Iwasawa \(\Lambda_{D_{\infty}/k}\)-module \(H_{\infty}\) constructed by means of the Heegner points belonging to \(E(D_ n)\), for every finite subextension \(D_ n\) of \(D_{\infty}/k\). \(H_{\infty}\) turns out to be free of dimension \(\leq 1.\) The characteristic series \({\mathcal L}_ p(E| k_{\infty})\) of the Pontryagin dual of the Selmer group \(S_ p(k_{\infty})\) should play a role in the study of the \(p\)-adic functions attached to \(E\). The multiplicity of its zeros is studied in the paper and, moreover, some conjectures in the Gross-Zagier style, relating its principal values to a height pairing defined over \(H_{\infty}\) are formulated. In an appendix the author studies also the variation by isogeny of the algebraic \(p\)-adic \(L\)-function \({\mathcal L}_ p(E| k_{\infty})\). Reviewer: P.Bayer Cited in 3 ReviewsCited in 43 Documents MSC: 11R23 Iwasawa theory 11R42 Zeta functions and \(L\)-functions of number fields 11S40 Zeta functions and \(L\)-functions 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) 14H25 Arithmetic ground fields for curves Keywords:Iwasawa module; modular elliptic curve; Heegner points; height pairing; algebraic \(p\)-adic \(L\)-function PDF BibTeX XML Cite \textit{B. Perrin-Riou}, Bull. Soc. Math. Fr. 115, 399--456 (1987; Zbl 0664.12010) Full Text: DOI Numdam EuDML OpenURL References: [1] BERNARDI (D.) , GOLDSTEIN (C.) et STEPHENS (N.) . - Notes p-adiques sur les courbes elliptiques , J. reine angew. Math. t. 351, 1984 , p. 129-170. MR 85k:11029 | Zbl 0529.14018 · Zbl 0529.14018 [2] BERTRAND (D.) . - Propriétés arithmétiques de fonctions thêta à plusieurs variables . Journées arithmétiques de Leiden, 1983 . [3] GROSS (B. H.) . - On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication , dans Number Theory related to Fermat’s Last Theorem : Progress in Math., t. 26, 1982 , p. 219-236. MR 84e:14020 | Zbl 0506.14040 · Zbl 0506.14040 [4] GROSS (B. H.) . - Heegner points on Xo(N) , dans Modular forms, RANKIN (R. A.) éd., Ellis Horwood Limited, 1984 , p. 87-105. MR 87f:11036b | Zbl 0559.14011 · Zbl 0559.14011 [5] GROSS (B. H.) et ZAGIER (D.) . - Points de Heegner et dérivées de fonctions L . C.R. Acad. Sci. Paris, t. 297, 1983 , p. 85-87. MR 85d:11062 | Zbl 0538.14023 · Zbl 0538.14023 [6] KURCANOV (P. F.) . - Elliptic curves of infinite rank over \Gamma -extensions , Math. Sbornik, t. 90, (132), 1973 ; Math. U.S.S.R. Sbornik, vol. 19, n 2, 1973 , p. 320-324. MR 48 #6117 | Zbl 0273.14009 · Zbl 0273.14009 [7] MAZUR (B.) et TATE (J.) . - Canonical height painngs via biextensions , vol. dédié à Shafarevich, Progress in Math., t. 35-36, 1983 , p. 195-237. MR 85j:14081 | Zbl 0574.14036 · Zbl 0574.14036 [8] MAZUR (B.) . - Modular curves and arithmetic , Proc. Int. congress. Warszawa, 1983 , p. 185-211. MR 87a:11054 | Zbl 0597.14023 · Zbl 0597.14023 [9] PERRIN-RIOU (B.) . - Arithmétique des courbes elliptiques et théorie d’Iwasawa , Mémoire 17, S.M.F., supplément au fascicule IV, t. 112, 1984 . Numdam | MR 87h:11058 | Zbl 0599.14020 · Zbl 0599.14020 [10] PERRIN-RIOU (B.) . - Fonctions L p-adiques attachées à une courbe elliptique modulaire et à un corps quadratique imaginaire , Lond. Math. Soc. (à paraître). · Zbl 0656.10019 [11] PERRIN-RIOU (B.) . - Fonctions L p-adiques et points de Heegner , Journées arithmétiques de Besançon, Société Mathématique de France, Astérisque, n^\circ 147-148, 1987 , p. 151-171. Zbl 0636.14005 · Zbl 0636.14005 [12] Modular functions of one variable IV , Springer Lectures Notes, vol. 476, p. 82-113. [13] BASHMAKOV (M. I.) . - The cohomology of abelian varieties over a number field , Russian Math. Surveys, vol. 27, 1972 , p. 25-70. MR 53 #2961 | Zbl 0271.14010 · Zbl 0271.14010 [14] CASSELS (J. W. S.) . - Arithmetic on curves of genus 1 , J. Reine angew. Math. (VII), t. 216, 1964 , p. 150-158. Article | MR 30 #92 | Zbl 0146.42304 · Zbl 0146.42304 [15] SERRE (J.-P.) . - Corps locaux , Hermann, Paris, 1968 . MR 50 #7096 [16] SERRE (J.-P.) . - Cohomologie galoisienne , Lect. Notes in Math., 5, Springer-Verlag, 1973 . MR 53 #8030 | Zbl 0259.12011 · Zbl 0259.12011 [17] TATE (J.) . - Duality theorems in Galois cohomology over number fields , Proc. Int. Congress, Stockholm, 1962 , p. 288-295. MR 31 #168 | Zbl 0126.07002 · Zbl 0126.07002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.