The scheme of morphisms from an elliptic curve to a Grassmannian. (English) Zbl 0664.14005

The author studies the scheme \(M_ d(X;p,n)\) parametrizing morphisms of degree \( d\) from an elliptic curve X to a Grassmann variety Gr(p,n). He proves that \(M_ d(X;p,n)\) is smooth if and only if \(p=1\), or \(p=n-1\), or \(d=2\); it is irreducible of dimension nd if \(d\geq n\); if \(d>n\), it is irreducible if and only if it is smooth. More precisely, if \(d>n\), the author shows that the irreducible components are the Zariski closures of certain locally closed subschemes \(M_ d^{a,b}(X;p,n)\), for \(0\leq a<p\), \(0\leq b<n-p\) and \(a+b=n-d\), of dimension \(nd+ab\). These subschemes are defined as follows: If \(f\in M_ d(X;p,n)\) is a closed point, let \(0\to V_ f\to E_ X\to Q_ f\to 0\) denote the pullback of the universal sequence on Gr(p,n). Then set \(M_ d^{a,b}(X;p,n)=\{f;\quad h^ 0(V_ f)=a,\quad h^ 0(Q_ f)=b\}\).
The last part of the paper gives sufficient conditions for three sheaves on X to fit into an exact sequence. If the sheaves are locally free and the sheaf of highest rank is trivial, this is related to the existence of maps from X into a corresponding Grassmann variety, with fixed pullbacks of the trivial bundles.
Reviewer: R.Piene


14D20 Algebraic moduli problems, moduli of vector bundles
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14H45 Special algebraic curves and curves of low genus
14H52 Elliptic curves
Full Text: Numdam EuDML


[1] M.F. Atiyah : Vector Bundles over an Elliptic Curve . Proc. Lond. Math. Soc. (3) VII 17 (1957) 414-452. · Zbl 0084.17305
[2] M.F. Atiyah : On the Krull-Schmidt Theorem with Applications to Sheaves . Bull. Soc. Math. France 84 (1956) 307-317. · Zbl 0072.18101
[3] A. Bruguières : Filtration de Harder-Narasimhan et stratification de Shatz . In: Module fibrés stables sur les courbes algébriques , Progress in Mathematics . Birkhâuser (1983). · Zbl 0577.14012
[4] A. Bruguières : Le schéma des morphismes d’une courbe elliptique dans une grassmannienne , thèse de 3è cycle. Université Paris 7 (1984).
[5] A. Grothendieck : Techniques de construction en géométrie algébrique , Séminaire Bourbaki, exposé 221. | · Zbl 0355.14005
[6] R. Hartshorne , Algebraic Geometry . Springer-Verlag (1977). · Zbl 0367.14001
[7] R. Hernandez : On a Harder-Narasimhan Stratification . Preprint.
[8] T. Oda : Vector Bundles on an Elliptic Curve . Nagoya Math. Jour. 43 (1971) 41-72. · Zbl 0201.53603
[9] C.S. Seshadri : Fibrés Vectoriels sur les Courbes Algébriques (rédigé par J.-M. Drézet). Astérisque 96 (1982). · Zbl 0517.14008
[10] S. Shatz : The Decomposition and Specialization of Algebraic Families of Vector Bundles . Comp. Math. 35 (2) (1977) 163-187. · Zbl 0371.14010
[11] J.-L. Verdier : Two-dimensional \sigma -models and Harmonic Maps S2 \rightarrow S2n . In: Grouptheoretical Methods in Physics , Lecture Notes in Physics 180. Springer-Verlag. · Zbl 0528.58008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.