zbMATH — the first resource for mathematics

Geometry of dual spaces of reductive groups (non-Archimedean case). (English) Zbl 0664.22010
Let \(\tilde G\) (resp. Ĝ) denote the set of equivalence classes of irreducible smooth (resp. unitarizable) representations of a connected reductive group G over a nonarchimedean local field F; this is the so- called dual (resp. unitary dual) space of G. Several years ago, the author (and also D. Miličić) made a careful study of the topology of these dual groups, and their relation to properties of the representation theory of G [Glas. Mat., III. Ser. 18(38), 259-279 (1983; Zbl 0536.22026); also ibid. 8(28), 7-22 (1973; Zbl 0265.46072)]. More recently, the author gave a detailed treatment of these questions for the group \(G=GL(n,F)\), building on the Bernstein-Zelevinsky parametrization of \(\tilde G,\) and the author’s own parametrization of \(\hat G\) [Duke Math. J. 55, 385-422 (1987)]; typical results there included a classification of all “isolated points modulo center” in \(\hat G,\) description of the composition factors of ends of complementary series representations, and a description of \(\hat G\) as an abstract topological space. In the present paper, the author reproves (and improves) some of his (and Miličić’s) earlier general results on the topology of \(\tilde G\) and \(\hat G,\) this time using the previously unavailable “Bernstein center”. The paper covers much important basic material, and provides a useful contrast between \(\hat G\) and \(\tilde G.\)
Reviewer: S.Gelbart

22E50 Representations of Lie and linear algebraic groups over local fields
Full Text: DOI
[1] P. Bernet and J. Dixmier,Sur le dual d’un groupe di Lie, C. R. Acad. Sci. Paris250 (1960), 1778–1779. · Zbl 0171.33901
[2] I. N. Bernstein,All reductive p-adic groups are tame, Funct. Anal. Appl.8 (1974), 91–93. · Zbl 0298.43013
[3] J. N. Bernstein and P. Deligne,Le ”centre” de Bernstein, inReprésentations des Groupes Réductifs sur un Corps Local, Hermann, Paris, 1984, pp. 1–32.
[4] J. Bernstein, P. Deligne and D. Kazhdan,Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math.47 (1986), 180–192. · Zbl 0634.22011
[5] I. N. Bernstein and A. V. Zelevinsky,Representations of the group GL(n, F) where F is a local non archimedean field, Uspekhi Mat. Nauk31, no 3 (1976), 5–70.
[6] A. Borel and N. Wallach,Continuous Cohomology, Discrete subgroups and Representations of Reductive Groups, Princeton University Press, Princeton, 1980. · Zbl 0443.22010
[7] W. Casselman,Introduction to the theory of admissible representations of p-adic reductive groups, preprint.
[8] W. Casselman,A new non-unitary argument for p-adic representations, J. Fac. Sci., Univ. Tokyo, Sect. 1A28 (1982), 907–928.
[9] J. Dixmier,Les C * -Algebras et leurs Représentations, Gauthiers–Villars, Paris, 1969.
[10] J. M. G. Fell,Non-unitary dual space of groups, Acta. Math.114 (1965), 267–310. · Zbl 0152.33204
[11] J. M. G. Fell,The dual spaces of Banach algebras, Trans. Am. Math. Soc.114 (1965), 227–250. · Zbl 0131.33102
[12] A. Guichardet,Cohomologie des groupes Topologiques et des Algèbras de Lie, Cedic-Fernand Nathan, Paris, 1980. · Zbl 0464.22001
[13] R. Howe and C. Moore,Asymptotic properties of unitary representations, J. Func. Anal.32 (1979), 72–96. · Zbl 0404.22015
[14] H. Jacquet,Représentations des groupes linéaires p-adiques, inTheory of group Representations and Fourier Analysis, Edizioni Cremonese, Rome, 1971, pp. 119–220.
[15] H. Jacquet and J. A. Shalika,On Euler products and the classification of automorphic representations I, Am. J. Math.103 (1981), 499–558. · Zbl 0473.12008
[16] D. A. Kazhdan,Connection of the dual space of a group with the structure of its closed subgroups, Func. Anal. Appl.1 (1967), 63–65. · Zbl 0168.27602
[17] A. A. Kirillov,Elements of the Theory of Representations, second edition, Nauka, Moskva, 1978. · Zbl 0443.73016
[18] D. Miličić,On C * -algebras with bounded trace, Glasnik Mat.8 (28) (1973), 7–22.
[19] A. Silberger,The Langlands quotient theorem for p-adic groups, Math. Ann.236 (1978), 95–104. · Zbl 0378.20035
[20] A. Silberger,Introduction to Harmonic Analysis on Reductive p-Adic Groups, Princeton University Press, Princeton, 1979. · Zbl 0458.22006
[21] B. Speh,The unitary dual of Gl(3,R)and Gl(4,R), Math. Ann.258 (1981), 113–133. · Zbl 0483.22005
[22] B. Speh,Unitary representations of Gl(n,R)with non-trivial (g,K)-conomology, Invent. Math.71 (1983), 443–465. · Zbl 0505.22015
[23] J. R. Strooker,Introduction to Categories, Homological Algebra and Sheaf Cohomology, Cambridge University Press, Cambridge, 1978. · Zbl 0377.18001
[24] M. Tadić,The C * -algebra of SL(2,k), Glasnik Mat.18 (38) (1982), 249–263.
[25] M. Tadić,Dual spaces of reductive groups, Berichte Math. Stat. Sekt, Forschungszentrum Graz200 (1983), 200/1–200/12. · Zbl 0536.22026
[26] M. Tadić,The topology of the dual space of a reductive group over a local field, Glasnik Mat.18 (38) (1983), 259–279. · Zbl 0536.22026
[27] M. Tadić,Dual spaces of adelic groups, Glasnik Mat.19 (39) (1984), 39–48. · Zbl 0538.22005
[28] M. Tadić,Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. Ec. Norm. Sup. 4e Series 19 (No. 3) (1986), 335–382. · Zbl 0614.22005
[29] M. Tadić,Proof of a conjecture of Bernstein, Math. Ann.272 (1985), 11–16. · Zbl 0563.22012
[30] M. Tadić,Topology of unitary dual of non-archimedean GL (n), Duke Math. J.55 (1987), 385–422. · Zbl 0668.22006
[31] M. Tadić,On limits of characters of irreducible unitary representations, Glasnik Mat., to appear.
[32] A. M. Veršik and S. I. Karpušev,Group cohomology in unitary representations, neighborhood of identity and conditional positive definite functions, Mat. Sbornik119 (161) (1982), 521–532.
[33] D. A. Vogan,Unitarizability of certain series of representations, Ann. of Math.120 (1984), 141–187. · Zbl 0561.22010
[34] D. A. Vogan and G. Zuckernan,Unitary representations with non-zero cohomology, Compositio Math.53 (1984), 51–90. · Zbl 0692.22008
[35] N. R. Wallach,On the unitarizability of derived functor modules, Invent. Math.78 (1984), 131–141. · Zbl 0547.22008
[36] G. Warner,Harmonic analysis on Semi-Simple Lie Groups I, Springer-Verlag, Berlin-Heidelberg-New York, 1972. · Zbl 0265.22020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.