Nazarov, S. A. Asymptotics of eigenvalues of the Dirichlet problem in a thin domain. (English. Russian original) Zbl 0664.35064 Sov. Math. 31, No. 11, 68-80 (1987); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1987, No. 11(306), 54-64 (1987). The paper is concerned with the asymptotics of some eigenvalues \(\lambda\) (\(\epsilon)\) as \(\epsilon\) \(\to 0\) of elliptic second-order differential operators in a cylinder with a height \(\epsilon\) and with Dirichlet boundary conditions. The author describes the first two terms in the asymptotics. Reviewer: G.Popov Cited in 1 Document MSC: 35P20 Asymptotic distributions of eigenvalues in context of PDEs 35J25 Boundary value problems for second-order elliptic equations Keywords:asymptotics; eigenvalues; Dirichlet boundary conditions PDFBibTeX XMLCite \textit{S. A. Nazarov}, Sov. Math. 31, No. 11, 68--80 (1987; Zbl 0664.35064); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1987, No. 11(306), 54--64 (1987)