zbMATH — the first resource for mathematics

On the volume of hyperbolic polyhedra. (English) Zbl 0664.51012
For ordinary orthoschemes in three-dimensional hyperbolic space Lobachevsky derived a volume formula in terms of the dihedral angles. In this article we study the volume problem for a more general class of hyperbolic polytopes, the so-called complete orthoschemes. These are orthoschemes truncated by at most two hyperplanes. The Coxeter polytopes (all dihedral angles are of the form \(\pi\) /p, \(p\in {\mathbb{N}}\), \(p\geq 2)\) among them arise as fundamental polytopes of a particular class of hyperbolic Coxeter groups and were classified by Im Hof in 1983. By generalizing the integration method of Coxeter and Böhm we derive explicit volume formulas for complete orthoschemes of dimension three; they are identical (up to a small modification in one particular case) to Lobachevsky’s formula for classical orthoschemes.
Reviewer: R.Kellerhals

51M10 Hyperbolic and elliptic geometries (general) and generalizations
51M25 Length, area and volume in real or complex geometry
Full Text: DOI EuDML
[1] Andreev, E.M.: On convex polyhedra in Loba?evskii spaces. Math. USSR Sbornik10 Vol. 3, 413-440 (1970) · Zbl 0217.46801
[2] Böhm, J.: Inhaltsmessung im ?5 konstanter Krümmung. Arch. Math.11, 298-309 (1960) · Zbl 0095.15203
[3] Böhm, J.: Zu Coxeters Integrationsmethode in gekrümmten Räumen. Math. Nachr.27, 179-214 (1964) · Zbl 0118.15302
[4] Böhm, J., Hertel, E.: Polyedergeometrie inn-dimensionalen Räumen konstanter Krümmung. Basel: Birkhäuser 1981 · Zbl 0466.52001
[5] Cartan, H.: Differentialformen. Zürich: Bibliographisches Institut 1967
[6] Coxeter, H.S.M.: The Functions of Schläfli and Lobatschefsky. In: Twelve geometric essays. Carbondale: Southern Illionis Univ. Press 1968
[7] Coxeter, H.S.M.: Regular honeycombs in elliptic space. Proc. Lond. Math. Soc. (3),4, 471-501 (1954) · Zbl 0056.38603
[8] Giering, O.: Vorlesungen über höhere Geometrie. Braunschweig Wiesbaden: Vieweg 1982 · Zbl 0493.51001
[9] Im Hof, H.-C.: A Class of Hyperbolic Coxeter Groups. Expo. Math.3, 179-186 (1985) · Zbl 0572.51012
[10] Kellerhals, R.: Ueber den Inhalt hyperbolischer Polyeder in den Dimensionen drei und vier. Dissertation, Basel 1988
[11] Kneser, H.: Der Simplexinhalt in der nichteuklidischen Geometrie. Deutsche Math.1, 337-340 (1936) · JFM 62.0653.03
[12] Lewin, L.: Dilogarithms and associated functions. New York Oxford: North Holland 1981 · Zbl 0465.33001
[13] Lobatschefskij, N.I.: Imaginäre Geometrie und ihre Anwendung auf einige Integrale. Deutsche Übersetzung von H. Liebmann. Leipzig: Teubner 1904
[14] Maier, W.: Inhaltsmessung imR 3 fester Krümmung. Arch. Math.5, 266-273 (1954) · Zbl 0055.38104
[15] Roeser, E.: Die nicht-euklidischen Geometrien und ihre Beziehungen untereinander. München: Oldenburg 1957 · Zbl 0183.25103
[16] Schläfli, L.: Theorie der vielfachen Kontinuität. In: Gesammelte mathematische Abhandlungen 1. Basel: Birkhäuser 1950
[17] Vinberg, È.B.: Hyperbolic reflection groups. Russ. Math. Surv.40, 31-75 (1985) · Zbl 0579.51015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.