Fixed points in fuzzy metric spaces. (English) Zbl 0664.54032

I. Kramosil and J. Michálek [Kybernetika 11, 336-344 (1975; Zbl 0319.54002)] extended the concept of probabilistic metric spaces to fuzzy metric spaces. In this context, the author gives fuzzy versions of the Banach contraction principle and of the well-known fixed point theorem of M. Edelstein [J. Lond. Math. Soc. 37, 74-79 (1962; Zbl 0113.165)].
Reviewer: S.Sessa


54H25 Fixed-point and coincidence theorems (topological aspects)
54A40 Fuzzy topology
Full Text: DOI


[1] Zi-ke, Deng, Fuzzy pseudo metric spaces, J. Math. Anal. Appl., 86, 74-95 (1982) · Zbl 0501.54003
[2] Edelstein, M., On fixed and periodic points under contractive mappings, J. London Math. Soc., 37, 74-79 (1962) · Zbl 0113.16503
[3] Erceg, M. A., Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69, 205-230 (1979) · Zbl 0409.54007
[4] Kaleva, O.; Seikkala, S., On fuzzy metric spaces, Fuzzy Sets and Systems, 12, 215-229 (1984) · Zbl 0558.54003
[5] Kramosil, J.; Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetika, 11, 334-336 (1975) · Zbl 0319.54002
[6] Kubiak, T., A topological version of a coincidence theorem (1981), Preprint
[7] Ray, B. K.; Chatterjee, H., Some results on fixed points in metric and Banach spaces, Bull. Acad. Polon. Math., 25, 1243-1247 (1977) · Zbl 0396.54039
[8] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J. Math., 10, 314-334 (1960) · Zbl 0091.29801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.