×

Accuracy of a deterministic particle method for Navier-Stokes equations. (English) Zbl 0664.76029

The accuracy of a deterministic particle method in approximating the solution of the Navier-Stokes equations is investigated. The convective part is solved using a classical vortex method for inviscid fluids, and an iterative procedure is added to improve the interpolation of the vorticity function. In our examples the vorticity is radially symmetric. For a regular initial data, a discrete quadratic error on the velocity and the vorticity is considered. Otherwise, for a singular initial data, the exact and computed angular moments of the vorticity are compared.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chorin, J. Fluid Mech. 57 pp 785– (1973)
[2] Roberts, J. Comput. Phys. 58 pp 29– (1985)
[3] ’Numerical simulation of separated flows’, NASA Technical Memorandum 84328, 1984.
[4] and , ’A particle method to solve transport diffusion equations, part II: The non linear case’, Rapport Interne No. 158, Centre de Mathématiques Appliquées de l’Ecole Polytechnique Palaiseau, April 1987.
[5] ’Modélisation asymptotique et numérique de noyaux tourbillonnaires enroulés’, These d’ etat, Université Pierre et Marie Curie, Paris, 1986.
[6] and , ’Application de la méthode particulaire aux écoulements à grand nombre de Reynolds’, 18ème Congrés National d’Analyse Numérique, Puy St Vincent, 20-24 May 1985.
[7] Lucquin-Desreux, La Recherche Aérospatiale 4 pp 1– (1987)
[8] and , ’Particle approximation of convection diffusion problems’, Publication No. R86013, Laboratoire d’Analyse Numérique de l’Université Pierre et Marie Curie, Paris, 1986.
[9] ’An analysis of particle methods’, CIME Course, Numerical Methods in Fluid Dynamics, Como, July 1983.
[10] Hald, SIAM J. Numer. Anal. 16 pp 726– (1979)
[11] Beale, J. Comput. Phys. 58 pp 188– (1985)
[12] Nicolaides, Appl. Numer. Math. 2 pp 313– (1986)
[13] ’On the accuracy of vortex methods at large times’, Proc. Workshop on Computational Fluids Dynamics and Reacting Gas Flows, Institute of Applied Mathematics, Mineapolis, September 1986.
[14] Franke, Math. Comput. 38 pp 181– (1982)
[15] Milinazzo, J. Comput. Phys. 23 pp 380– (1977)
[16] Perlman, J. Comput. Phys. 59 pp 200– (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.