×

kProbLog: an algebraic Prolog for kernel programming. (English) Zbl 1347.68290

Inoue, Katsumi (ed.) et al., Inductive logic programming. 25th international conference, ILP 2015, Kyoto, Japan, August 20–22, 2015. Revised selected papers. Cham: Springer (ISBN 978-3-319-40565-0/pbk; 978-3-319-40566-7/ebook). Lecture Notes in Computer Science 9575. Lecture Notes in Artificial Intelligence, 152-165 (2016).
Summary: kProbLog is a simple algebraic extension of Prolog with facts and rules annotated with semiring labels. We propose kProbLog as a language for learning with kernels. kProbLog allows to elegantly specify systems of algebraic expressions on databases. We propose some code examples of gradually increasing complexity, we give a declarative specification of some matrix operations and an algorithm to solve linear systems. Finally we show the encodings of state-of-the-art graph kernels such as Weisfeiler-Lehman graph kernels, propagation kernels and an instance of Graph Invariant Kernels (GIKs), a recent framework for graph kernels with continuous attributes. The number of feature extraction schemas, that we can compactly specify in kProbLog, shows its potential for machine learning applications.
For the entire collection see [Zbl 1339.68010].

MSC:

68T05 Learning and adaptive systems in artificial intelligence
68N17 Logic programming
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its application in link discovery. In: IJCAI (2007)
[2] Eisner, J., Filardo, N.W.: Dyna: extending datalog for modern AI. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2010. LNCS, vol. 6702, pp. 181–220. Springer, Heidelberg (2011) · Zbl 06061699
[3] Esparza, J., Luttenberger, M.: Solving fixed-point equations by derivation tree analysis. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 19–35. Springer, Heidelberg (2011) · Zbl 1344.68107
[4] Esparza, J., Kiefer, S., Luttenberger, M.: An extension of newton’s method to \[ \omega \] -continuous semirings. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 157–168. Springer, Heidelberg (2007) · Zbl 1202.68106
[5] Esparza, J., Luttenberger, M., Schlund, M.: FPsolve: a generic solver for fixpoint equations over semirings. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 1–15. Springer, Heidelberg (2014) · Zbl 1302.68330
[6] Frasconi, P., Costa, F., De Raedt, L., De Grave, K.: kLog: A language for logical and relational learning with kernels. In: Artificial Intelligence (2014) · Zbl 1405.68288
[7] Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of database systems. ACM (2007)
[8] Kim, M., Candan, K.S.: Approximate tensor decomposition within a tensor-relational algebraic framework. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM (2011)
[9] Kimmig, A., Van den Broeck, G., De Raedt, L.: An algebraic prolog for reasoning about possible worlds. In: 25th AAAI Conference on Artificial Intelligence (2011)
[10] Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: Learning simple relational kernels. In: AAAI (2006)
[11] Lehmann, D.J.: Algebraic structures for transitive closure. In: Theoretical Computer Science (1977) · Zbl 0358.68061
[12] Neumann, M., Patricia, N., Garnett, R., Kersting, K.: Efficient graph kernels by randomization. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 378–393. Springer, Heidelberg (2012) · Zbl 06167324
[13] Orsini, F., Frasconi, P., De Raedt, L.: Graph invariant kernels. In: Proceedings of the 24th IJCAI (2015)
[14] Ross Quinlan, J.: Learning logical definitions from relations. Mach. Learn. 5(3), 239–266 (1990)
[15] Richardson, M., Domingos, P.: Markov logic networks. Machine Learning (2006) · Zbl 1470.68221
[16] Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In: IJCAI (1997)
[17] Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011) · Zbl 1280.68194
[18] Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., De Raedt, L.: Anytime inference in probabilistic logic programs with tp-compilation. In: Proceedings of the 24th IJCAI (2015) · Zbl 1386.68174
[19] Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 97–118. Springer, Heidelberg (2005) · Zbl 1159.68386
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.