×

zbMATH — the first resource for mathematics

Algorithmic differentiation of numerical methods: tangent and adjoint solvers for parameterized systems of nonlinear equations. (English) Zbl 1347.65099

MSC:
65H10 Numerical computation of solutions to systems of equations
65Y20 Complexity and performance of numerical algorithms
68W30 Symbolic computation and algebraic computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Bischof, M. Bücker, P. Hovland, U. Naumann, and J. Utke (Eds.). 2008. Advances in Automatic Differentiation. Lecture Notes in Computational Science and Engineering, Vol. 64. Springer, Berlin. · Zbl 1143.65003 · doi:10.1007/978-3-540-68942-3
[2] C. Broyden. 1970. The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and Its Applications 6, 76–90. · Zbl 0223.65023 · doi:10.1093/imamat/6.1.76
[3] M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris (Eds.). 2006. Automatic Differentiation: Applications, Theory, and Tools. Lecture Notes in Computational Science and Engineering, Vol. 50. Springer, Berlin. · Zbl 1084.65002 · doi:10.1007/3-540-28438-9
[4] L. Capriotti. 2011. Fast Greeks by algorithmic differentiation. Journal of Computational Finance 14, 3. · Zbl 1395.91491 · doi:10.21314/JCF.2011.234
[5] B. Christianson. 1994. Reverse accumulation and attractive fixed points. Optimization Methods and Software 3, 4, 311–326. · doi:10.1080/10556789408805572
[6] A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee. 1997. Reverse differentiation and the inverse diffusion problem. Advances in Engineering Software 28, 4, 217–221. DOI:http://dx.doi.org/10.1016/S0965-9978(97)00005-7 · Zbl 05470105 · doi:10.1016/S0965-9978(97)00005-7
[7] N. Dunford and J. Schwartz. 1988. Linear Operators, Part 1, General Theory. Wiley. · Zbl 0635.47001
[8] S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther (Eds.). 2012. Recent Advances in Algorithmic Differentiation. Lecture Notes in Computational Science and Engineering, Vol. 87. Springer, Berlin. · Zbl 1247.65002 · doi:10.1007/978-3-642-30023-3
[9] A. Gebremedhin, F. Manne, and A. Pothen. 2005. What color is your Jacobian? Graph coloring for computing derivatives. SIAM Review 47, 4, 629–705. · Zbl 1076.05034 · doi:10.1137/S0036144504444711
[10] R. Giering and T. Kaminski. 1998. Recipes for adjoint code construction. ACM Transactions on Mathematical Software 24, 437–474. · Zbl 0934.65027 · doi:10.1145/293686.293695
[11] J. C. Gilbert. 1992. Automatic differentiation and iterative processes. Optimization Methods and Software 1, 13–21. · doi:10.1080/10556789208805503
[12] M. Giles. 2008. Collected matrix derivative results for forward and reverse mode algorithmic differentiation. In Advances in Automatic Differentiation. Lecture Notes in Computational Science and Engineering, Vol. 64. Springer, 35–44. · Zbl 1154.65308 · doi:10.1007/978-3-540-68942-3_4
[13] M. Giles and P. Glasserman. 2006. Smoking adjoints: Fast Monte Carlo Greeks. Risk 19, 88–92.
[14] A. Griewank. 1992. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optimization Methods and Software 1, 35–54. · doi:10.1080/10556789208805505
[15] A. Griewank and C. Faure. 2002. Reduced functions, gradients and Hessians from fixed-point iterations for state equations. Numerical Algorithms 30, 2, 113–139. · Zbl 1005.65025 · doi:10.1023/A:1016051717120
[16] A. Griewank, D. Juedes, and J. Utke. 1996. ADOL-C, a package for the automatic differentiation of algorithms written in C/C++. ACM Transactions on Mathematical Software 22, 131–167. · Zbl 0884.65015 · doi:10.1145/229473.229474
[17] A. Griewank and A. Walther. 2000. Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software 26, 1, 19–45. DOI:http://dx.doi.org/10.1145/347837.347846 · Zbl 1137.65330 · doi:10.1145/347837.347846
[18] A. Griewank and A. Walther. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation (2nd ed.). Other Titles in Applied Mathematics, No. 105. SIAM, Philadelphia, PA. · Zbl 1159.65026
[19] L. Hascoët, U. Naumann, and V. Pascual. 2005. To-be-recorded analysis in reverse mode automatic differentiation. Future Generation Computer Systems 21, 1401–1417. · doi:10.1016/j.future.2004.11.009
[20] L. Hascoet and V. Pascual. 2013. The tapenade automatic differentiation tool: Principles, model, and specification. ACM Transactions on Mathematical Software 39, 3, 20. · Zbl 1295.65026
[21] M. Henrard. 2014. Adjoint algorithmic differentiation: Calibration and implicit function theorem. Journal of Computational Finance 17, 4. · doi:10.21314/JCF.2014.284
[22] U. Lehmann and A. Walther. 2002. The implementation and testing of time-minimal and resource-optimal parallel reversal schedules. In Computational Science—ICCS 2002. Lecture Notes in Computer Science, Vol. 2330. Springer, 1049–1058. · Zbl 1055.68526 · doi:10.1007/3-540-46080-2_110
[23] U. Naumann. 2008. Call tree reversal is NP-complete. In Advances in Automatic Differentiation. Lecture Notes in Computational Science and Engineering, Vol. 64. Springer, 13–22. · Zbl 1152.65070
[24] U. Naumann. 2009. DAG reversal is NP-complete. Journal of Discrete Algorithms 7, 402–410. · Zbl 1192.68490 · doi:10.1016/j.jda.2008.09.008
[25] U. Naumann. 2012. The Art of Differentiating Computer Programs. An Introduction to Algorithmic Differentiation. Software, Environments, and Tools, No. 24. SIAM, Philadelphia, PA. · Zbl 1275.65015
[26] U. Naumann and J. du Toit. 2014. Adjoint Algorithmic Differentiation Tool Support for Typical Numerical Patterns in Computational Finance. Technical Report AIB2014-13. RWTH Aachen University, Aachen, Germany. http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2014/2014-13.pdf.
[27] U. Naumann, K. Leppkes, and J. Lotz. 2014. dco/c++ User Guide. Technical Report AIB-2014-03. RWTH Aachen University, Aachen, Germany. http://aib.informatik.rwth-aachen.de/2014/2014-03.pdf.gz.
[28] A. Nemili, E. Özkaya, N. Gauger, F. Kramer, A. Carnarius, and F. Thiele. 2013. Discrete adjoint based sensitivity analysis for optimal flow control of a 3D high-lift configuration. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference. 1–14. · doi:10.2514/6.2013-2585
[29] J. Nocedal and S. J. Wright. 2006. Numerical Optimization (2nd ed.). Springer-Verlag, New York, NY. · Zbl 1104.65059
[30] F. Rauser, J. Riehme, K. Leppkes, P. Korn, and U. Naumann. 2010. On the use of discrete adjoints in goal error estimation for shallow water equations. Procedia Computer Science 1, 1, 107–115. DOI:http://dx.doi.org/DOI: 10.1016/j.procs.2010.04.013 · doi:10.1016/j.procs.2010.04.013
[31] N. Safiran, J. Lotz, and U. Naumann. 2014. Algorithmic Differentiation of Numerical Methods: Second-Order Tangent and Adjoint Solvers for Systems of Nonlinear Equations. Technical Report AIB-2014-07. RWTH Aachen University, Aachen, Germany. http://aib.informatik.rwth-aachen.de/2014/2014-07.pdf.gz.
[32] M. Sagebaum, N. Gauger, J. Lotz, and U. Naumann. 2013. Algorithmic differentiation of a large simulation code including libraries. Procedia Computer Science 18, 208–217. · doi:10.1016/j.procs.2013.05.184
[33] P. Stumm and A. Walther. 2010. New algorithms for optimal online checkpointing. SIAM Journal on Scientific Computing 32, 2, 836–854. · Zbl 1214.65038 · doi:10.1137/080742439
[34] M. Towara and U. Naumann. 2013. Toward discrete adjoint OpenFOAM. Procedia Computer Science 18, 429–438. · doi:10.1016/j.procs.2013.05.206
[35] J. Ungermann, J. Blank, J. Lotz, K. Leppkes, L. Hoffmann, T. Guggenmoser, M. Kaufmann, P. Preusse, U. Naumann, and M. Riese. 2011. A 3-D tomographic retrieval approach with advection compensation for the air-borne limb-imager GLORIA. Atmospheric Measurement Techniques 4, 11, 2509–2529. DOI:http://dx.doi.org/10.5194/amt-4-2509-2011 · doi:10.5194/amt-4-2509-2011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.