×

General proportional mean residual life model. (English) Zbl 1413.60007

Summary: By considering a covariate random variable in the ordinary proportional mean residual life (PMRL) model, we introduce and study a general model, taking more situations into account with respect to the ordinary PMRL model. We investigate how stochastic structures of the proposed model are affected by the stochastic properties of the baseline and the mixing variables in the model. Several characterizations and preservation properties of the new model under different stochastic orders and aging classes are provided. In addition, to illustrate different properties of the model, some examples are presented.

MSC:

60E05 Probability distributions: general theory
60E15 Inequalities; stochastic orderings
62N05 Reliability and life testing
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] R. E. Barlow, F. Proschan: Statistical Theory of Reliability and Life Testing. International Series in Decision Processes. Holt, Rinehart and Winston, New York, 1975.
[2] J. Behboodian: Covariance inequality and its applications. Int. J. Math. Educ. Sci. Technol. 25 (1994), 643–647. · Zbl 0822.60015
[3] Y. Q. Chen, S. Cheng: Semiparametric regression analysis of mean residual life with censored survival data. Biometrika 92 (2005), 19–29. · Zbl 1068.62044
[4] Y. Q. Chen, N. P. Jewell, X. Lei, S. C. Cheng: Semiparametric estimation of proportional mean residual life model in presence of censoring. Biometrics 61 (2005), 170–178. · Zbl 1077.62079
[5] R. C. Gupta: Mean residual life function for additive and multiplicative hazard rate models. Probab. Eng. Inf. Sci. 30 (2016), 281–297. · Zbl 1373.62496
[6] R. C. Gupta, S. N. U. A. Kirmani: On the proportional mean residual life model and its implications. Statistics 32 (1998), 175–187. · Zbl 0916.62064
[7] S. Karlin: Total Positivity. Vol. I. Stanford University Press, Stanford, 1968. · Zbl 0219.47030
[8] M. Kayid, S. Izadkhah: A new extended mixture model of residual lifetime distributions. Oper. Res. Lett. 43 (2015), 183–188. · Zbl 1408.62169
[9] M. Kayid, S. Izadkhah, D. ALmufarrej: Random effect additive mean residual life model. IEEE Trans. Reliab. 65 (2016), 860–866.
[10] C.-D. Lai, M. Xie: Stochastic Ageing and Dependence for Reliability. Springer, New York, 2006.
[11] G. Maguluri, C.-H. Zhang: Estimation in the mean residual life regression model. J. R. Stat. Soc., Ser. B 56 (1994), 477–489. · Zbl 0803.62083
[12] Z. Mansourvar, T. Martinussen, T. H. Scheike: Semiparametric regression for restricted mean residual life under right censoring. J. Appl. Stat. 42 (2015), 2597–2613.
[13] A. K. Nanda, S. Bhattacharjee, S. S. Alam: Properties of proportional mean residual life model. Stat. Probab. Lett. 76 (2006), 880–890. · Zbl 1089.62120
[14] A. K. Nanda, S. Bhattacharjee, N. Balakrishnan: Mean residual life function, associated orderings and properties. IEEE Trans. Reliab. 59 (2010), 55–65.
[15] A. K. Nanda, S. Das, N. Balakrishnan: On dynamic proportional mean residual life model. Probab. Eng. Inf. Sci. 27 (2013), 553–588. · Zbl 1282.90058
[16] R. B. Nelsen: An Introduction to Copulas. Springer Series in Statistics, Springer, New York, 2006.
[17] D. Oakes, T. Dasu: Inference for the proportional mean residual life model. Crossing Boundaries: Statistical Essays in Honor of J. Hall. IMS Lecture Notes Monogr. Ser. 43, Inst. Math. Statist., Beachwood, 2003, pp. 105–116. · Zbl 1255.62314
[18] M. Shaked, J. G. Shanthikumar: Stochastic Orders. Springer Series in Statistics, Springer, New York, 2007. · Zbl 0806.62009
[19] H. Zahedi: Proportional mean remaining life model. J. Stat. Plann. Inference 29 (1991), 221–228.
[20] W. Zhao, E. A. Elsayed: Modelling accelerated life testing based on mean residual life. Int. J. Syst. Sci. 36 (2005), 689–696. · Zbl 1087.90020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.