A treatment of a determinant inequality of Fiedler and Markham. (English) Zbl 1413.15040

Summary: M. Fiedler and T. L. Markham [Math. Slovaca 44, No. 4, 441–444 (1994; Zbl 0828.15023)] proved \[ \Big(\frac{\det\widehat{H}}{k}\Big)^{k}\geq\det H, \] where \(H=(H_{ij})_{i,j=1}^n\) is a positive semidefinite matrix partitioned into \(n\times n\) blocks with each block \(k\times k\) and \(\widehat{H}=(\operatorname{tr}H_{ij})_{i,j=1}^n\). We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove \[ \det(I_n+\widehat{H})\geq\det(I_{nk}+kH)^{1/k}. \]


15A45 Miscellaneous inequalities involving matrices
15A15 Determinants, permanents, traces, other special matrix functions


Zbl 0828.15023
Full Text: DOI Link


[1] R. Bhatia: Positive Definite Matrices. Texts and Readings in Mathematics 44. New Delhi: Hindustan Book Agency, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2007.
[2] J.-C. Bourin, E.-Y. Lee, M. Lin: Positive matrices partitioned into a small number of Hermitian blocks. Linear Algebra Appl. 438 (2013), 2591–2598. · Zbl 1262.15037
[3] J. de Pillis: Transformations on partitioned matrices. Duke Math. J. 36 (1969), 511–515. · Zbl 0186.33703
[4] M. Fiedler, T. L. Markham: On a theorem of Everitt, Thompson, and de Pillis. Math. Slovaca 44 (1994), 441–444. · Zbl 0828.15023
[5] T. Hiroshima: Majorization criterion for distillability of a bipartite quantum state. Phys. Rev. Lett. 91 (2003), no. 057902, 4 pages. http://dx.doi.org/10.1103/PhysRevLett.91.057902.
[6] R. A. Horn, C. R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge, 2013. · Zbl 1267.15001
[7] M. Horodecki, P. Horodecki, R. Horodecki: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223 (1996), 1–8. · Zbl 1037.81501
[8] A. Jenčová, M. B. Ruskai: A unified treatment of convexity of relative entropy and related trace functions, with conditions for equality. Rev. Math. Phys. 22 (2010), 1099–1121. · Zbl 1218.81025
[9] M. Lin: Some applications of a majorization inequality due to Bapat and Sunder. Linear Algebra Appl. 469 (2015), 510–517. · Zbl 1310.15033
[10] D. Petz: Quantum Information Theory and Quantum Statistics. Theoretical and Mathematical Physics, Springer, Berlin, 2008. · Zbl 1145.81002
[11] A. E. Rastegin: Relations for symmetric norms and anti-norms before and after partial trace. J. Stat. Phys. 148 (2012), 1040–1053. · Zbl 1260.81011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.