×

zbMATH — the first resource for mathematics

Linear preservers of row-dense matrices. (English) Zbl 1413.15051
The authors deal with linear preserves problems of row-dense matrices. A rectangular matrix \(A\) is row-dense if there are no zeros between two nonzero entries in its rows. Furthermore \(A\) is a column-dense matrix if \(A^T\) is row-dense. The structure of linear functions \(T:M_{m,n}\mapsto M_{m,n}\) that preserve or strongly preserve row-dense matrices is studied. Conditions for \(T(A)\) to be row-dense when \(A\) is row-dense are provided. In addition, the structure of linear preservers and strong linear preservers of column-dense matrices are considered.

MSC:
15A86 Linear preserver problems
PDF BibTeX Cite
Full Text: DOI Link
References:
[1] M. Fiedler, F. J. Hall, M. Stroev: Dense alternating sign matrices and extensions. Linear Algebra Appl. 444 (2014), 219–226. · Zbl 1286.15041
[2] G. Frobenius: Über die Darstellung der endlichen Gruppen durch Linear Substitutionen. Berl. Ber. 1897 (1897), 994–1015. (In German.) · JFM 28.0130.01
[3] M. A. Hadian Nadoshan, A. Armandnejad: B-majorization and its linear preservers. Linear Algebra Appl. 478 (2015), 218–227. · Zbl 1312.15002
[4] L. Hogben ed.: Handbook of Linear Algebra. Discrete Mathematics and Its Applications, Chapman & Hall/CRC Press, Boca Raton, 2014.
[5] C.-K. Li, S. Pierce: Linear preserver problems. Am. Math. Mon. 108 (2001), 591–605. · Zbl 0991.15001
[6] S. Pierce, M. H. Lim, R. Lowey, Ch.-K. Li, N.-K. Tsing, B. R. McDonald, L. Basley: A survey of linear preserver problems. Linear Multilinear Algebra 33 (1992), 1–129.
[7] M. Soleymani, A. Armandnejad: Linear preservers of even majorization on Mn,m. Linear Multilinear Algebra 62 (2014), 1437–1449. · Zbl 1309.15045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.