Moukala, Norbert Mahoungou; Bossoto, Basile Guy Richard Prolongation of Poisson \(2\)-form on Weil bundles. (English) Zbl 1389.58001 Arch. Math., Brno 52, No. 2, 91-111 (2016). Let \(M\) be an \(n\)-dimensional smooth manifold and \(A\) be a Weil algebra. The associated Weil bundle is denoted as \(\pi_{M}:M^A\to M\). Geometrical objects on \(M\) can be lifted to geometrical object on \(M^A\). In the paper the authors study lifts of 2-forms \(\omega_M\) on \(M\) to \(A\)-valued 2-forms \(\omega^A_{M^A}\). If \((M,\omega_M)\) is a Poisson manifold then a necessary and sufficient condition for \((M^A,\omega^A_{M^A})\) to be an \(A\)-Poisson manifold are found. Reviewer: Josef Janyška (Brno) Cited in 1 Document MSC: 58A20 Jets in global analysis 58A32 Natural bundles 17B63 Poisson algebras 53D17 Poisson manifolds; Poisson groupoids and algebroids 53D05 Symplectic manifolds (general theory) Keywords:Weil bundle; Weil algebra; Poisson manifold; Lie derivative; Poisson 2-form PDF BibTeX XML Cite \textit{N. M. Moukala} and \textit{B. G. R. Bossoto}, Arch. Math., Brno 52, No. 2, 91--111 (2016; Zbl 1389.58001) Full Text: DOI arXiv OpenURL