zbMATH — the first resource for mathematics

Extending the Uintah framework through the petascale modeling of detonation in arrays of high explosive devices. (English) Zbl 1457.76003

76-04 Software, source code, etc. for problems pertaining to fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Y05 Parallel numerical computation
65Y15 Packaged methods for numerical algorithms
80A25 Combustion
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI
[2] A. Almgren, J. Bell, D. Kasen, M. Lijewski, A. Nonaka, P. Nugent, C. Rendleman, R. Thomas, and M. Zingale, MAESTRO, CASTRO, and SEDONA: Petascale Codes for Astrophysical Applications, preprint, http://arxiv.org/abs/1008.2801 arXiv:1008.2801, 2010.
[3] J. Ang et al., Workshop on Extreme-Scale Solvers: Transition to Future Architectures, Tech. Report, U.S. Department of Energy, Office of Advanced Scientific Computing Research. Report of a meeting held on March 8–9 2012, Washington, D.C., 2012.
[4] B. W. Asay, S. F. Son, and J. B. Bdzil, The role of gas permeation in convective burning, Internat. J. Multiphase Flow, 22 (1996), pp. 923–952. · Zbl 1135.76350
[5] J. Beckvermit, T. Harman, A. Bezdjian, and C. Wight, Modeling deflagration in energetic materials using the Uintah computational framework, Procedia Comput. Sci., 51 (2015), pp. 552–561.
[6] J. G. Bennett, K. S. Haberman, J. N. Johnson, and B. W. Asay, A constitutive model for the non-shock ignition and mechanical response of high explosives, J. Mech. Phys. Solids, 46 (1998), pp. 2303–2322. · Zbl 1030.74005
[7] J. G. Bennett, K. S. Haberman, J. N. Johnson, B. W. Asay, and B. F. Henson, A constitutive model for the non-shock ignition and mechanical response of high explosives, J. Mech. Phys. Solids, 46 (1998), pp. 2303–2322. · Zbl 1030.74005
[8] H. L. Berghout, S. F. Son, L. G. Hill, and B. W. Asay, Flame spread through cracks of PBX 9501 (a composite octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine-based explosive), J. Appl. Phys., 99 (2006), 114901.
[9] H. L. Berghout, S. F. Son, C. B. Skidmore, D. J. Idar, and B. W. Asay, Combustion of damaged PBX 9501 explosive, Thermochimica Acta, 384 (2002), pp. 261–277.
[10] M. Berzins, Status of Release of the Uintah Computational Framework, Tech. Report UUSCI-2012-001, Scientific Computing and Imaging Institute, http://www.sci.utah.edu/publications/SCITechReports/UUSCI-2012-001.pdf, 2012
[11] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C. Wight, and J. Peterson, Uintah - a scalable framework for hazard analysis, in TG ’10: Proceedings of the 2010 TeraGrid Conference, ACM, New York, 2010.
[12] M. Berzins, J. Schmidt, Q. Meng, and A. Humphrey, Past, present, and future scalability of the Uintah software, in Proceedings of the Blue Waters Extreme Scaling Workshop 2012, 2013, article 6, http://www.cs.utah.edu/ ahumphre/pubs/bw-workshop12.pdf.
[14] D. L. Brown and P. Messina, Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale, Tech. Report PNNL 20168, U.S. Department of Energy. Report from the Workshop on February 2–4, 2010 Washington, D.C., 2011.
[15] P. B. Butler and H. Kriar, Analysis of Deflagration to Detonation Transition in High-Energy Solid Propellants, annual technical report, University of Illinois at Urbana-Champaign, 1984.
[16] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini, and B. V. Straalen, Chombo Software Package for AMR Applications: Design Document, http://web.mit.edu/ehliu/Public/ehliu/chomboDesign.pdf.
[17] J. D. de St. Germain, J. McCorquodale, S. G. Parker, and C. R. Johnson, Uintah: A massively parallel problem solving environment, in Ninth IEEE International Symposium on High Performance and Distributed Computing, IEEE, Piscataway, NJ, 2000, pp. 33–41, http://www.sci.utah.edu/publications/dav00/uintah-hpdc00.pdf.
[18] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D. Graves, M. Lijewski, F. Löffler, B. O’Shea, E. Schnetter, B. V. Straalen, and K. Weide, A survey of high level frameworks in block-structured adaptive mesh refinement packages, J. Parallel Distrib. Comput., 74 (2014), pp. 3217–3227, http://www.sci.utah.edu/publications/Dub2014a/Dubey_JPDC2014.pdf.
[19] A. P. Esposito, D. L. Farber, J. E. Reaugh, and J. M. Zaug, Reaction propagation rates in HMX at high pressure, Propellants Explosives Pyrotechnics, 28 (2003), pp. 83–88.
[20] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Macneice, R. Rosner, J. W. Rosner, J. W. Truran, and H. Tufo, FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, Astrophys. J. Suppl. Ser., 131 (2000), pp. 273–334.
[21] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf, The Cactus framework and toolkit: Design and applications, in Vector and Parallel Processing VECPAR 2002, Lecture Notes in Computer Science, Springer, Berlin, 2003. · Zbl 1027.65524
[23] J. Guilkey, T. Harman, and B. Banerjee, An Eulerian-Lagrangian approach for simulating explosions of energetic devices, Comput. & Structures, 85 (2007), pp. 660–674, http://www.sci.utah.edu/publications/Gui2007a/Guilkey_CS2007.pdf.
[24] J. E. Guilkey, T. B. Harman, A. Xia, B. A. Kashiwa, and P. A. McMurtry, An Eulerian-Lagrangian approach for large deformation fluid-structure interaction problems, part 1: Algorithm development, in Fluid Structure Interaction II, Cadiz, Spain, WIT Press, 2003, pp. 143–156.
[25] T. B. Harman, J. E. Guilkey, B. A. Kashiwa, J. Schmidt, and P. A. McMurtry, An Eulerian-Lagrangian approach for large deformation fluid-structure interaction problems, part 2: Multi-physics simulations within a modern computational framework, in Fluid Structure Interaction II, Cadiz, Spain, WIT Press, 2003, pp.157–166.
[27] B. Kashiwa and E. Gaffney, Design Basis for CFDLIB, Tech. Report LA-UR-03-1295, Los Alamos National Laboratory, Los Alamos, NM, 2003.
[28] B. A. Kashiwa, A Multifield Model and Method for Fluid-Structure Interaction Dynamics, Tech. Report LA-UR-01-1136, Los Alamos National Laboratory, Los Alamos, NM, 2001.
[29] B. A. Kashiwa and R. M. Rauenzahn, A Multimaterial Formalism, Tech. Report LA-UR-94-771, Los Alamos National Laboratory, Los Alamos, NM, 1994.
[30] S. Kumar, A. Saha, J. Schmidt, V. Vishwanath, P. Carns, G. Scorzelli, H. Kolla, R. Grout, R. Ross, M. Papka, J. Chen, and V. Pascucci, Characterization and modeling of PIDX for performance prediction, in Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, ACM, New York, 2013, pp. 96:1–96:11.
[31] J. Luitjens and M. Berzins, Improving the performance of Uintah: A large-scale adaptive meshing computational framework, in Proceedings of the 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS10), 2010, http://www.sci.utah.edu/publications/luitjens10/Luitjens_ipdps2010.pdf.
[32] J. Luitjens and M. Berzins, Scalable parallel regridding algorithms for block-structured adaptive mesh refinement, Concurrency and Computation, 23 (2011), pp. 1522–1537, http://dx.doi.org/10.1002/cpe.1719.
[33] J. Luitjens, M. Berzins, and T. Henderson, Parallel space-filling curve generation through sorting, Concurrency and Computation, 19 (2007), pp. 1387–1402, http://dx.doi.org/http://dx.doi.org/10.1002/cpe.v19:10 doi:http://dx.doi.org/10.1002/cpe.v19:10.
[34] J. Luitjens, B. Worthen, M. Berzins, and T. Henderson, Scalable parallel AMR for the Uintah multiphysics code, in Petascale Computing Algorithms and Applications, Chapman and Hall/CRC, 2007, pp. 67–82.
[35] Q. Meng and M. Berzins, Scalable large-scale fluid-structure interaction solvers in the Uintah framework via hybrid task-based parallelism algorithms, Concurrency and Computation, 26 (2014), pp. 1388–1407, http://dx.doi.org/10.1002/cpe.3099.
[36] Q. Meng, M. Berzins, and J. Schmidt, Using hybrid parallelism to improve memory use in Uintah, in Proceedings of the Teragrid 2011 Conference, ACM, New York, 2011, http://www.sci.utah.edu/publications/meng11/Meng_Tgrid11.pdf.
[37] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins, Investigating applications portability with the Uintah DAG-based runtime system on petascale supercomputers, in Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, ACM, New York, 2013, pp. 96:1–96:12.
[38] T. Ogawa, E. Oran, and V. Gamezo, Numerical study of flame acceleration and DDT in an inclined array of cylinders using an AMR technique, Comput. and Fluids, 85 (2013), pp. 63–70. · Zbl 1290.80028
[39] B. O’Shea, G. Bryan, J. Bordner, M. Norman, T. Abel, R. Harkness, and A. Kritsuk, Introducing Enzo, an AMR cosmology application, in Adaptive Mesh Refinement: Theory and Applications, Lect. Notes Comput. Sci. Eng. 41, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 341–350. · Zbl 1065.83066
[40] S. G. Parker, A component-based architecture for parallel multi-physics PDE simulation, Future Generation Comput. Syst., 22 (2006), pp. 204–216.
[41] S. G. Parker, J. Guilkey, and T. Harman, A component-based parallel infrastructure for the simulation of fluid-structure interaction, Engineering with Computers, 22 (2006), pp. 277–292.
[42] J. R. Peterson, J. Beckvermit, T. Harman, M. Berzins, and C. A. Wight, Multiscale modeling of high explosives for transportation accidents, in XSEDE ’12: Proceedings of 2012 XSEDE Conference, ACM, New York, 2012.
[43] J. R. Peterson and C. A. Wight, An Eulerian-Lagrangian computational model for deflagration and detonation of high explosives, Combustion and Flame, 159 (2012), pp. 2491–2499.
[44] P. J. Smith, R. Rawat, J. Spinti, S. Kumar, S. Borodai, and A. Violi, Large eddy simulation of accidental fires using massively parallel computers, in 18th AIAA Computational Fluid Dynamics Conference, 2003.
[45] S. F. Son and H. L. Berghout, Flame spread across surfaces of PBX 9501, in American Institute of Physics Conference Proceedings, 2006, pp. 1014–1017.
[46] P. C. Souers, S. Anderson, J. Mercer, E. McGuire, and P. Vitello, JWL++: A simple reactive flow code package for detonation, Propellants Explosives Pyrotechnics, 25 (2000), pp. 54–58.
[47] D. Sulsky, Z. Chen, and H. L. Schreyer, A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118 (1994), pp. 179–196, http://dx.doi.org/10.1016/0045-7825(94)90112-0 doi:10.1016/0045-7825(94)90112-0, http://www.sciencedirect.com/science/article/pii/0045782594901120. · Zbl 0851.73078
[48] W. A. Trzcinski, Numerical analysis of the deflagration to detonation transition in primary explosives, Cent. Eur. J. Energetic Mat., 9 (2012), pp. 17–38.
[49] M. J. Ward, S. F. Son, and M. Q. Brewster, Steady deflagration of HMX with simple kinetics: A gas phase chain reaction model, Combustion and Flame, 114 (1998), pp. 556–568.
[50] L. Wei, H. Dong, H. Pan, X. Hu, and J. Zhu, Study on the mechanism of the deflagration to detonation transition process of explosive, J. Energetic Mat., 32 (2014), pp. 238–251.
[51] C. A. Wight and E. Eddings, Science-Based Simulation Tools for Hazard Assessment and Mitigation, Internat. J. Energetic Mat. Chem. Propul., 8 (2009).
[52] T. Zhang, Y. L. Bai, S. Y. Wang, and P. D. Liu, Damage of a high-energy solid propellant and its deflagration-to-detonation transition, Propellants Explosives Pyrotechnics, 28 (2003), pp. 37–42.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.