zbMATH — the first resource for mathematics

Comparison of adaptive multiresolution and adaptive mesh refinement applied to simulations of the compressible Euler equations. (English) Zbl 1457.65069
Summary: We present a detailed comparison between two adaptive numerical approaches to solve partial differential equations, adaptive multiresolution (MR) and adaptive mesh refinement (AMR). Both discretizations are based on finite volumes in space with second order shock-capturing and explicit time integration either with or without local time stepping. The two methods are benchmarked for the compressible Euler equations in Cartesian geometry. As test cases a two-dimensional Riemann problem, Lax-Liu \(\#6\), and a three-dimensional ellipsoidally expanding shock wave have been chosen. We compare and assess their computational efficiency in terms of CPU time and memory requirements. We evaluate the accuracy by comparing the results of the adaptive computations with those obtained with the corresponding FV scheme using a regular fine mesh. We find that both approaches yield similar trends for CPU time compression for increasing number of refinement levels. MR exhibits more efficient memory compression than AMR and shows slightly enhanced convergence; however, a larger absolute overhead is measured for the tested codes.
Reviewer: Reviewer (Berlin)

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65N08 Finite volume methods for boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65Y20 Complexity and performance of numerical algorithms
76L05 Shock waves and blast waves in fluid mechanics
76N06 Compressible Navier-Stokes equations
76M12 Finite volume methods applied to problems in fluid mechanics
35Q31 Euler equations
Full Text: DOI arXiv
[1] R. Abgrall and A. Harten, Multiresolution representation in unstructured meshes, SIAM J. Numer. Anal., 35 (1998), pp. 2128–2146. · Zbl 0933.65110
[2] R. Becker and R. Rannacher, An optimal control approach to a-posteriori error estimation, in Acta Numer., Vol. 10, A. Iserles, R. Becker, R. Rannacher, and P. G. Ciarlet, eds., Cambridge University Press, Cambridge, 2001, pp. 1–102. · Zbl 1105.65349
[3] J. Bell, M. Berger, J. Saltzman, and M. Welcome, Three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Comput., 15 (1994), pp. 127–138. · Zbl 0793.65072
[4] M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82 (1988), pp. 64–84. · Zbl 0665.76070
[5] M. Berger and R. J. LeVeque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal., 35 (1998), pp. 2298–2316. · Zbl 0921.65070
[6] M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53 (1984), pp. 484–512. · Zbl 0536.65071
[7] B. L. Bihari, Multiresolution schemes for conservation laws with viscosity, J. Comput. Phys., 123 (1997), pp. 207–225. · Zbl 0840.65093
[8] B. L. Bihari and A. Harten, Multiresolution schemes for the numerical solution of 2-D conservation laws I, SIAM J. Sci. Comput., 18 (1996), pp. 315–354. · Zbl 0878.35007
[9] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp. 333–390. · Zbl 0373.65054
[10] C. Burstedde, L. C. Wilcox, and O. Ghattas, \em\textttp4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103–1133. · Zbl 1230.65106
[11] G. Chiavassa and R. Donat, Point value multi-scale algorithms for 2D compressible flow, SIAM J. Sci. Comput., 23 (2001), pp. 805–823. · Zbl 1043.76046
[12] A. Cohen, Wavelet methods in numerical analysis, in Handbook of Numerical Analysis, Vol. VII, P. G. Ciarlet and J. L. Lions, eds., Elsevier, Amsterdam, 2000. · Zbl 0976.65124
[13] A. Cohen, N. Dyn, S. M. Kaber, and M. Postel, Multiresolution finite volume schemes on triangles, J. Comput. Phys., 161 (2000), pp. 264–286. · Zbl 0959.65105
[14] A. Cohen, S. M. Kaber, S. Müller, and M. Postel, Fully adaptive multiresolution finite volume schemes for conservation laws, Math. Comp., 72 (2003), pp. 183–225. · Zbl 1010.65035
[15] W. Dahmen, B. Gottschlich-Müller, and S. Müller, Multiresolution schemes for conservation laws, Numer. Math., 88 (2001), pp. 399–443. · Zbl 1001.65104
[16] R. Deiterding, AMROC—Blockstructured Adaptive Mesh Refinement in Object-oriented C++, .
[17] R. Deiterding, Parallel Adaptive Simulation of Multi-Dimensional Detonation Structures, Ph.D. thesis, Brandenburgische Technische Universität Cottbus, 2003.
[18] R. Deiterding, Construction and application of an AMR algorithm for distributed memory computers, in Adaptive Mesh Refinement—Theory and Applications, T. Plewa, T. Linde, and V. G. Weirs, eds., Lect. Notes Comput. Sci. Eng. 41, Springer, Heidelberg, 2005, pp. 361–372. · Zbl 1065.65114
[19] R. Deiterding, A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains, Comput. Struct., 87 (2009), pp. 769–783.
[20] R. Deiterding, Block-structured adaptive mesh refinement—Theory, implementation and application, ESAIM Proc., 34 (2011), pp. 97–150. · Zbl 1302.65220
[21] R. Deiterding, M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider, Adaptive multiresolution or adaptive mesh refinement? A case study for 2D Euler equations, ESAIM Proc., 16 (2009), pp. 181–194. · Zbl 1301.76058
[22] R. Deiterding, R. Radovitzki, S. Mauch, F. Cirak, D. J. Hill, C. Pantano, J. C. Cummings, and D. I. Meiron, Virtual Test Facility: A virtual shock physics facility for simulating the dynamic response of materials, .
[23] M. O. Domingues, S. M. Gomes, and L. M. A Diaz, Adaptive wavelet representation and differenciation on block-structured grids, Appl. Numer. Math., 47 (2003), pp. 421–437. · Zbl 1035.65167
[24] M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider, An adaptive multiresolution scheme with local time stepping for evolutionary PDEs, J. Comput. Phys., 227 (2008), pp. 3758–3780. · Zbl 1139.65060
[25] M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider, Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations, Appl. Numer. Math., 59 (2009), pp. 2303–2321. · Zbl 1165.76031
[26] M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider, Adaptive multiresolution methods, ESAIM Proc., 34 (2011), pp. 1–96. · Zbl 1302.65185
[27] M. O. Domingues, O. Roussel, and K. Schneider, An adaptive multiresolution method for parabolic PDEs with time-step control, Internat. J. Numer. Methods Engrg., 78 (2009), pp. 652–670. · Zbl 1183.76816
[28] H. Friedel, R. Grauer, and C. Marliani, Adaptive mesh refinement for singular current sheets in incompressible magnetohydrodynamics flows, J. Comput. Phys., 134 (1997), pp. 190–198. · Zbl 0879.76079
[29] B. Gottschlich-Müller and S. Müller, Adaptive finite volume schemes for conservation laws based on local multiresolution techniques, in Hyperbolic Problems: Theory, Numerics, Applications 129, R. Jeltsch and M. Frey, eds., Internat. Ser. Numer. Math., 1999. · Zbl 0929.65081
[30] A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Comm. Pure Appl. Math., 48 (1995), pp. 1305–1342. · Zbl 0860.65078
[31] A. Harten, Multiresolution representation of data: A general framework, SIAM J. Numer. Anal., 33 (1996), pp. 385–394. · Zbl 0861.65130
[32] M. Holmström, Wavelet Based Methods for Time Dependent PDEs, Ph.D. thesis, Uppsala University, 1997.
[33] M. Holmström, Solving hyperbolic PDEs using interpolating wavelets, SIAM J. Sci. Comput., 21 (1999), pp. 405–420.
[34] R. D. Hornung, A. M. Wissink, and S. H. Kohn, Managing complex data and geometry in parallel structured AMR applications, Eng. Comput., 22 (2006), pp. 181–195.
[35] M. Kaibara and S. M. Gomes, A fully adaptive multiresolution scheme for shock computations, in Godunov Methods: Theory and Applications, E. F. Toro, ed., Klumer Academic/Plenum, Norwell, MA, 2001. · Zbl 1064.76589
[36] A. M. Khokhlov, Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations, J. Comput. Phys., 143 (1998), pp. 519–543. · Zbl 0934.76057
[37] S. R. Kohn and S. B. Baden, A parallel software infrastructure for structured adaptive mesh methods, in Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, 1995.
[38] D. Kolomenskiy, J.-C. Nave, and K. Schneider, Adaptive gradient-augmented level set method with multiresolution error estimation, J. Sci. Comput., 66 (2016), pp. 116–140. · Zbl 1338.35290
[39] P. D. Lax and X. D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput., 19 (1998), pp. 319–340. · Zbl 0952.76060
[40] M.-S. Liou, A sequel to AUSM: AUSM+, J. Comput. Phys., 129 (1996), pp. 364–382. · Zbl 0870.76049
[41] P. MacNeice, K. M. Olson, C. Mobarry, R. deFainchtein, and C. Packer, PARAMESH: A parallel adaptive mesh refinement community toolkit, Comput. Phys. Commun., 126 (2000), pp. 330–354. · Zbl 0953.65088
[42] S. Müller, Adaptive Multiscale Schemes for Conservation Laws, Lect. Notes Comput. Sci. Eng. 27, Springer, Heidelberg, 2003. · Zbl 1016.76004
[43] S. Müller and Y. Stiriba, Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping, J. Sci. Comput., 30 (2007), pp. 493–531. · Zbl 1110.76037
[44] C. Pantano, R. Deiterding, D. J. Hill, and D. I. Pullin, A low-numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows, J. Comput. Phys., 221 (2007), pp. 63–87. · Zbl 1125.76034
[45] C. A. Rendleman, V. E. Beckner, M. Lijewski, W. Crutchfield, and J. B. Bell, Parallelization of structured, hierarchical adaptive mesh refinement algorithms, Comput. Vis. Sci., 3 (2000). · Zbl 0971.65089
[46] D. Rossinelli, B. Hejazialhosseini, D. Spampinato, and P. Koumoutsakos, Multicore/multi-gpu accelerated simulations of multiphase compressible flows using wavelet adapted grids, SIAM J. Sci. Comput., 33 (2011), pp. 512–540. · Zbl 1368.76051
[47] D. Rossinelli, B. Hejazialhosseini, W. van Rees, M. Gazzola, M. Bergdorf, and P. Koumoutsakos, Mrag-i\(2\)d: Multiresolution adapted grids for remeshed vortex methods on multicore architectures, J. Comput. Phys., 288 (2015), pp. 1–18. · Zbl 1351.76026
[48] O. Roussel and K. Schneider, An adaptive multiresolution method for combustion problems: Application to flame ball—vortex interaction, Comput. & Fluids, 34 (2005), pp. 817–831. · Zbl 1134.80304
[49] O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn, A conservative fully adaptive multiresolution algorithm for parabolic PDEs, J. Comput. Phys., 188 (2003), pp. 493–523. · Zbl 1022.65093
[50] K. Schneider and O. V. Vasilyev, Wavelet methods in computational fluid dynamics, Annu. Rev. Fluid. Mech., 42 (2010), pp. 473–503. · Zbl 1345.76085
[51] C. W. Schulz-Rinne, J. P. Collis, and H. M. Glaz, Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14 (1993), pp. 1394–1414. · Zbl 0785.76050
[52] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Heidelberg, 1997. · Zbl 0888.76001
[53] Y. Wada and M. S. Liou, An accurate and robust flux splitting scheme for shock and contact discontinuities, SIAM J. Sci. Comput., 18 (1997), pp. 633–657. · Zbl 0879.76064
[54] T. Weinzierl and M. Mehl, Peano—A traversal and storage scheme for octree-like adaptive Cartesian multiscale grids, SIAM J. Sci. Comput., 33 (2011), pp. 2732–2760. · Zbl 1245.65169
[55] T. Zhang and Y. Zheng, Conjecture on the structure of solutions the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Math. Anal., 21 (1990), pp. 593–630. · Zbl 0726.35081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.